1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
|
*> \brief \b CLAVHE
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLAVHE( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
* LDB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAVHE performs one of the matrix-vector operations
*> x := A*x or x := A^H*x,
*> where x is an N element vector and A is one of the factors
*> from the block U*D*U' or L*D*L' factorization computed by CHETRF.
*>
*> If TRANS = 'N', multiplies by U or U * D (or L or L * D)
*> If TRANS = 'C', multiplies by U' or D * U' (or L' or D * L')
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the factor stored in A is upper or lower
*> triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the operation to be performed:
*> = 'N': x := A*x
*> = 'C': x := A^H*x
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the diagonal blocks are unit
*> matrices. If the diagonal blocks are assumed to be unit,
*> then A = U or A = L, otherwise A = U*D or A = L*D.
*> = 'U': Diagonal blocks are assumed to be unit matrices.
*> = 'N': Diagonal blocks are assumed to be non-unit matrices.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of vectors
*> x to be multiplied by A. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The block diagonal matrix D and the multipliers used to
*> obtain the factor U or L as computed by CHETRF_ROOK.
*> Stored as a 2-D triangular matrix.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> Details of the interchanges and the block structure of D,
*> as determined by CHETRF.
*>
*> If UPLO = 'U':
*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
*> (If IPIV( k ) = k, no interchange was done).
*>
*> If IPIV(k) = IPIV(k-1) < 0, then rows and
*> columns k-1 and -IPIV(k) were interchanged,
*> D(k-1:k,k-1:k) is a 2-by-2 diagonal block.
*>
*> If UPLO = 'L':
*> If IPIV(k) > 0, then rows and columns k and IPIV(k)
*> were interchanged and D(k,k) is a 1-by-1 diagonal block.
*> (If IPIV( k ) = k, no interchange was done).
*>
*> If IPIV(k) = IPIV(k+1) < 0, then rows and
*> columns k+1 and -IPIV(k) were interchanged,
*> D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, B contains NRHS vectors of length N.
*> On exit, B is overwritten with the product A * B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CLAVHE( UPLO, TRANS, DIAG, N, NRHS, A, LDA, IPIV, B,
$ LDB, INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER INFO, LDA, LDB, N, NRHS
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
COMPLEX A( LDA, * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT
INTEGER J, K, KP
COMPLEX D11, D12, D21, D22, T1, T2
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CGEMV, CGERU, CLACGV, CSCAL, CSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
IF( .NOT.LSAME( UPLO, 'U' ) .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.LSAME( TRANS, 'N' ) .AND. .NOT.LSAME( TRANS, 'C' ) )
$ THEN
INFO = -2
ELSE IF( .NOT.LSAME( DIAG, 'U' ) .AND. .NOT.LSAME( DIAG, 'N' ) )
$ THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLAVHE ', -INFO )
RETURN
END IF
*
* Quick return if possible.
*
IF( N.EQ.0 )
$ RETURN
*
NOUNIT = LSAME( DIAG, 'N' )
*------------------------------------------
*
* Compute B := A * B (No transpose)
*
*------------------------------------------
IF( LSAME( TRANS, 'N' ) ) THEN
*
* Compute B := U*B
* where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Loop forward applying the transformations.
*
K = 1
10 CONTINUE
IF( K.GT.N )
$ GO TO 30
IF( IPIV( K ).GT.0 ) THEN
*
* 1 x 1 pivot block
*
* Multiply by the diagonal element if forming U * D.
*
IF( NOUNIT )
$ CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
*
* Multiply by P(K) * inv(U(K)) if K > 1.
*
IF( K.GT.1 ) THEN
*
* Apply the transformation.
*
CALL CGERU( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
$ LDB, B( 1, 1 ), LDB )
*
* Interchange if P(K) != I.
*
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
END IF
K = K + 1
ELSE
*
* 2 x 2 pivot block
*
* Multiply by the diagonal block if forming U * D.
*
IF( NOUNIT ) THEN
D11 = A( K, K )
D22 = A( K+1, K+1 )
D12 = A( K, K+1 )
D21 = CONJG( D12 )
DO 20 J = 1, NRHS
T1 = B( K, J )
T2 = B( K+1, J )
B( K, J ) = D11*T1 + D12*T2
B( K+1, J ) = D21*T1 + D22*T2
20 CONTINUE
END IF
*
* Multiply by P(K) * inv(U(K)) if K > 1.
*
IF( K.GT.1 ) THEN
*
* Apply the transformations.
*
CALL CGERU( K-1, NRHS, ONE, A( 1, K ), 1, B( K, 1 ),
$ LDB, B( 1, 1 ), LDB )
CALL CGERU( K-1, NRHS, ONE, A( 1, K+1 ), 1,
$ B( K+1, 1 ), LDB, B( 1, 1 ), LDB )
*
* Interchange if P(K) != I.
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
END IF
K = K + 2
END IF
GO TO 10
30 CONTINUE
*
* Compute B := L*B
* where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m)) .
*
ELSE
*
* Loop backward applying the transformations to B.
*
K = N
40 CONTINUE
IF( K.LT.1 )
$ GO TO 60
*
* Test the pivot index. If greater than zero, a 1 x 1
* pivot was used, otherwise a 2 x 2 pivot was used.
*
IF( IPIV( K ).GT.0 ) THEN
*
* 1 x 1 pivot block:
*
* Multiply by the diagonal element if forming L * D.
*
IF( NOUNIT )
$ CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
*
* Multiply by P(K) * inv(L(K)) if K < N.
*
IF( K.NE.N ) THEN
KP = IPIV( K )
*
* Apply the transformation.
*
CALL CGERU( N-K, NRHS, ONE, A( K+1, K ), 1,
$ B( K, 1 ), LDB, B( K+1, 1 ), LDB )
*
* Interchange if a permutation was applied at the
* K-th step of the factorization.
*
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
END IF
K = K - 1
*
ELSE
*
* 2 x 2 pivot block:
*
* Multiply by the diagonal block if forming L * D.
*
IF( NOUNIT ) THEN
D11 = A( K-1, K-1 )
D22 = A( K, K )
D21 = A( K, K-1 )
D12 = CONJG( D21 )
DO 50 J = 1, NRHS
T1 = B( K-1, J )
T2 = B( K, J )
B( K-1, J ) = D11*T1 + D12*T2
B( K, J ) = D21*T1 + D22*T2
50 CONTINUE
END IF
*
* Multiply by P(K) * inv(L(K)) if K < N.
*
IF( K.NE.N ) THEN
*
* Apply the transformation.
*
CALL CGERU( N-K, NRHS, ONE, A( K+1, K ), 1,
$ B( K, 1 ), LDB, B( K+1, 1 ), LDB )
CALL CGERU( N-K, NRHS, ONE, A( K+1, K-1 ), 1,
$ B( K-1, 1 ), LDB, B( K+1, 1 ), LDB )
*
* Interchange if a permutation was applied at the
* K-th step of the factorization.
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
END IF
K = K - 2
END IF
GO TO 40
60 CONTINUE
END IF
*--------------------------------------------------
*
* Compute B := A^H * B (conjugate transpose)
*
*--------------------------------------------------
ELSE
*
* Form B := U^H*B
* where U = P(m)*inv(U(m))* ... *P(1)*inv(U(1))
* and U^H = inv(U^H(1))*P(1)* ... *inv(U^H(m))*P(m)
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Loop backward applying the transformations.
*
K = N
70 IF( K.LT.1 )
$ GO TO 90
*
* 1 x 1 pivot block.
*
IF( IPIV( K ).GT.0 ) THEN
IF( K.GT.1 ) THEN
*
* Interchange if P(K) != I.
*
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
*
* Apply the transformation
* y = y - B' conjg(x),
* where x is a column of A and y is a row of B.
*
CALL CLACGV( NRHS, B( K, 1 ), LDB )
CALL CGEMV( 'Conjugate', K-1, NRHS, ONE, B, LDB,
$ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
CALL CLACGV( NRHS, B( K, 1 ), LDB )
END IF
IF( NOUNIT )
$ CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
K = K - 1
*
* 2 x 2 pivot block.
*
ELSE
IF( K.GT.2 ) THEN
*
* Interchange if P(K) != I.
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K-1 )
$ CALL CSWAP( NRHS, B( K-1, 1 ), LDB, B( KP, 1 ),
$ LDB )
*
* Apply the transformations
* y = y - B' conjg(x),
* where x is a block column of A and y is a block
* row of B.
*
CALL CLACGV( NRHS, B( K, 1 ), LDB )
CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
$ A( 1, K ), 1, ONE, B( K, 1 ), LDB )
CALL CLACGV( NRHS, B( K, 1 ), LDB )
*
CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
CALL CGEMV( 'Conjugate', K-2, NRHS, ONE, B, LDB,
$ A( 1, K-1 ), 1, ONE, B( K-1, 1 ), LDB )
CALL CLACGV( NRHS, B( K-1, 1 ), LDB )
END IF
*
* Multiply by the diagonal block if non-unit.
*
IF( NOUNIT ) THEN
D11 = A( K-1, K-1 )
D22 = A( K, K )
D12 = A( K-1, K )
D21 = CONJG( D12 )
DO 80 J = 1, NRHS
T1 = B( K-1, J )
T2 = B( K, J )
B( K-1, J ) = D11*T1 + D12*T2
B( K, J ) = D21*T1 + D22*T2
80 CONTINUE
END IF
K = K - 2
END IF
GO TO 70
90 CONTINUE
*
* Form B := L^H*B
* where L = P(1)*inv(L(1))* ... *P(m)*inv(L(m))
* and L^H = inv(L^H(m))*P(m)* ... *inv(L^H(1))*P(1)
*
ELSE
*
* Loop forward applying the L-transformations.
*
K = 1
100 CONTINUE
IF( K.GT.N )
$ GO TO 120
*
* 1 x 1 pivot block
*
IF( IPIV( K ).GT.0 ) THEN
IF( K.LT.N ) THEN
*
* Interchange if P(K) != I.
*
KP = IPIV( K )
IF( KP.NE.K )
$ CALL CSWAP( NRHS, B( K, 1 ), LDB, B( KP, 1 ), LDB )
*
* Apply the transformation
*
CALL CLACGV( NRHS, B( K, 1 ), LDB )
CALL CGEMV( 'Conjugate', N-K, NRHS, ONE, B( K+1, 1 ),
$ LDB, A( K+1, K ), 1, ONE, B( K, 1 ), LDB )
CALL CLACGV( NRHS, B( K, 1 ), LDB )
END IF
IF( NOUNIT )
$ CALL CSCAL( NRHS, A( K, K ), B( K, 1 ), LDB )
K = K + 1
*
* 2 x 2 pivot block.
*
ELSE
IF( K.LT.N-1 ) THEN
*
* Interchange if P(K) != I.
*
KP = ABS( IPIV( K ) )
IF( KP.NE.K+1 )
$ CALL CSWAP( NRHS, B( K+1, 1 ), LDB, B( KP, 1 ),
$ LDB )
*
* Apply the transformation
*
CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
$ B( K+2, 1 ), LDB, A( K+2, K+1 ), 1, ONE,
$ B( K+1, 1 ), LDB )
CALL CLACGV( NRHS, B( K+1, 1 ), LDB )
*
CALL CLACGV( NRHS, B( K, 1 ), LDB )
CALL CGEMV( 'Conjugate', N-K-1, NRHS, ONE,
$ B( K+2, 1 ), LDB, A( K+2, K ), 1, ONE,
$ B( K, 1 ), LDB )
CALL CLACGV( NRHS, B( K, 1 ), LDB )
END IF
*
* Multiply by the diagonal block if non-unit.
*
IF( NOUNIT ) THEN
D11 = A( K, K )
D22 = A( K+1, K+1 )
D21 = A( K+1, K )
D12 = CONJG( D21 )
DO 110 J = 1, NRHS
T1 = B( K, J )
T2 = B( K+1, J )
B( K, J ) = D11*T1 + D12*T2
B( K+1, J ) = D21*T1 + D22*T2
110 CONTINUE
END IF
K = K + 2
END IF
GO TO 100
120 CONTINUE
END IF
*
END IF
RETURN
*
* End of CLAVHE
*
END
|