1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
*> \brief \b CPBT05
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CPBT05( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX,
* XACT, LDXACT, FERR, BERR, RESLTS )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER KD, LDAB, LDB, LDX, LDXACT, N, NRHS
* ..
* .. Array Arguments ..
* REAL BERR( * ), FERR( * ), RESLTS( * )
* COMPLEX AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
* $ XACT( LDXACT, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPBT05 tests the error bounds from iterative refinement for the
*> computed solution to a system of equations A*X = B, where A is a
*> Hermitian band matrix.
*>
*> RESLTS(1) = test of the error bound
*> = norm(X - XACT) / ( norm(X) * FERR )
*>
*> A large value is returned if this ratio is not less than one.
*>
*> RESLTS(2) = residual from the iterative refinement routine
*> = the maximum of BERR / ( NZ*EPS + (*) ), where
*> (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
*> and NZ = max. number of nonzeros in any row of A, plus 1
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows of the matrices X, B, and XACT, and the
*> order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of super-diagonals of the matrix A if UPLO = 'U',
*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of the matrices X, B, and XACT.
*> NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*> AB is COMPLEX array, dimension (LDAB,N)
*> The upper or lower triangle of the Hermitian band matrix A,
*> stored in the first KD+1 rows of the array. The j-th column
*> of A is stored in the j-th column of the array AB as follows:
*> if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KD+1.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> The right hand side vectors for the system of linear
*> equations.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,NRHS)
*> The computed solution vectors. Each vector is stored as a
*> column of the matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in] XACT
*> \verbatim
*> XACT is COMPLEX array, dimension (LDX,NRHS)
*> The exact solution vectors. Each vector is stored as a
*> column of the matrix XACT.
*> \endverbatim
*>
*> \param[in] LDXACT
*> \verbatim
*> LDXACT is INTEGER
*> The leading dimension of the array XACT. LDXACT >= max(1,N).
*> \endverbatim
*>
*> \param[in] FERR
*> \verbatim
*> FERR is REAL array, dimension (NRHS)
*> The estimated forward error bounds for each solution vector
*> X. If XTRUE is the true solution, FERR bounds the magnitude
*> of the largest entry in (X - XTRUE) divided by the magnitude
*> of the largest entry in X.
*> \endverbatim
*>
*> \param[in] BERR
*> \verbatim
*> BERR is REAL array, dimension (NRHS)
*> The componentwise relative backward error of each solution
*> vector (i.e., the smallest relative change in any entry of A
*> or B that makes X an exact solution).
*> \endverbatim
*>
*> \param[out] RESLTS
*> \verbatim
*> RESLTS is REAL array, dimension (2)
*> The maximum over the NRHS solution vectors of the ratios:
*> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
*> RESLTS(2) = BERR / ( NZ*EPS + (*) )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CPBT05( UPLO, N, KD, NRHS, AB, LDAB, B, LDB, X, LDX,
$ XACT, LDXACT, FERR, BERR, RESLTS )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KD, LDAB, LDB, LDX, LDXACT, N, NRHS
* ..
* .. Array Arguments ..
REAL BERR( * ), FERR( * ), RESLTS( * )
COMPLEX AB( LDAB, * ), B( LDB, * ), X( LDX, * ),
$ XACT( LDXACT, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER I, IMAX, J, K, NZ
REAL AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
COMPLEX ZDUM
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ICAMAX
REAL SLAMCH
EXTERNAL LSAME, ICAMAX, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, MAX, MIN, REAL
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( ZDUM ) = ABS( REAL( ZDUM ) ) + ABS( AIMAG( ZDUM ) )
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0 or NRHS = 0.
*
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RESLTS( 1 ) = ZERO
RESLTS( 2 ) = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
UNFL = SLAMCH( 'Safe minimum' )
OVFL = ONE / UNFL
UPPER = LSAME( UPLO, 'U' )
NZ = 2*MAX( KD, N-1 ) + 1
*
* Test 1: Compute the maximum of
* norm(X - XACT) / ( norm(X) * FERR )
* over all the vectors X and XACT using the infinity-norm.
*
ERRBND = ZERO
DO 30 J = 1, NRHS
IMAX = ICAMAX( N, X( 1, J ), 1 )
XNORM = MAX( CABS1( X( IMAX, J ) ), UNFL )
DIFF = ZERO
DO 10 I = 1, N
DIFF = MAX( DIFF, CABS1( X( I, J )-XACT( I, J ) ) )
10 CONTINUE
*
IF( XNORM.GT.ONE ) THEN
GO TO 20
ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
GO TO 20
ELSE
ERRBND = ONE / EPS
GO TO 30
END IF
*
20 CONTINUE
IF( DIFF / XNORM.LE.FERR( J ) ) THEN
ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
ELSE
ERRBND = ONE / EPS
END IF
30 CONTINUE
RESLTS( 1 ) = ERRBND
*
* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
*
DO 90 K = 1, NRHS
DO 80 I = 1, N
TMP = CABS1( B( I, K ) )
IF( UPPER ) THEN
DO 40 J = MAX( I-KD, 1 ), I - 1
TMP = TMP + CABS1( AB( KD+1-I+J, I ) )*
$ CABS1( X( J, K ) )
40 CONTINUE
TMP = TMP + ABS( REAL( AB( KD+1, I ) ) )*
$ CABS1( X( I, K ) )
DO 50 J = I + 1, MIN( I+KD, N )
TMP = TMP + CABS1( AB( KD+1+I-J, J ) )*
$ CABS1( X( J, K ) )
50 CONTINUE
ELSE
DO 60 J = MAX( I-KD, 1 ), I - 1
TMP = TMP + CABS1( AB( 1+I-J, J ) )*CABS1( X( J, K ) )
60 CONTINUE
TMP = TMP + ABS( REAL( AB( 1, I ) ) )*CABS1( X( I, K ) )
DO 70 J = I + 1, MIN( I+KD, N )
TMP = TMP + CABS1( AB( 1+J-I, I ) )*CABS1( X( J, K ) )
70 CONTINUE
END IF
IF( I.EQ.1 ) THEN
AXBI = TMP
ELSE
AXBI = MIN( AXBI, TMP )
END IF
80 CONTINUE
TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
IF( K.EQ.1 ) THEN
RESLTS( 2 ) = TMP
ELSE
RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
END IF
90 CONTINUE
*
RETURN
*
* End of CPBT05
*
END
|