1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
*> \brief \b CPTT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CPTT01( N, D, E, DF, EF, WORK, RESID )
*
* .. Scalar Arguments ..
* INTEGER N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL D( * ), DF( * )
* COMPLEX E( * ), EF( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CPTT01 reconstructs a tridiagonal matrix A from its L*D*L'
*> factorization and computes the residual
*> norm(L*D*L' - A) / ( n * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The n diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX array, dimension (N-1)
*> The (n-1) subdiagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] DF
*> \verbatim
*> DF is REAL array, dimension (N)
*> The n diagonal elements of the factor L from the L*D*L'
*> factorization of A.
*> \endverbatim
*>
*> \param[in] EF
*> \verbatim
*> EF is COMPLEX array, dimension (N-1)
*> The (n-1) subdiagonal elements of the factor L from the
*> L*D*L' factorization of A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(L*D*L' - A) / (n * norm(A) * EPS)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CPTT01( N, D, E, DF, EF, WORK, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER N
REAL RESID
* ..
* .. Array Arguments ..
REAL D( * ), DF( * )
COMPLEX E( * ), EF( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I
REAL ANORM, EPS
COMPLEX DE
* ..
* .. External Functions ..
REAL SLAMCH
EXTERNAL SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
EPS = SLAMCH( 'Epsilon' )
*
* Construct the difference L*D*L' - A.
*
WORK( 1 ) = DF( 1 ) - D( 1 )
DO 10 I = 1, N - 1
DE = DF( I )*EF( I )
WORK( N+I ) = DE - E( I )
WORK( 1+I ) = DE*CONJG( EF( I ) ) + DF( I+1 ) - D( I+1 )
10 CONTINUE
*
* Compute the 1-norms of the tridiagonal matrices A and WORK.
*
IF( N.EQ.1 ) THEN
ANORM = D( 1 )
RESID = ABS( WORK( 1 ) )
ELSE
ANORM = MAX( D( 1 )+ABS( E( 1 ) ), D( N )+ABS( E( N-1 ) ) )
RESID = MAX( ABS( WORK( 1 ) )+ABS( WORK( N+1 ) ),
$ ABS( WORK( N ) )+ABS( WORK( 2*N-1 ) ) )
DO 20 I = 2, N - 1
ANORM = MAX( ANORM, D( I )+ABS( E( I ) )+ABS( E( I-1 ) ) )
RESID = MAX( RESID, ABS( WORK( I ) )+ABS( WORK( N+I-1 ) )+
$ ABS( WORK( N+I ) ) )
20 CONTINUE
END IF
*
* Compute norm(L*D*L' - A) / (n * norm(A) * EPS)
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of CPTT01
*
END
|