File: ctbt02.f

package info (click to toggle)
lapack 3.12.1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,908 kB
  • sloc: fortran: 622,840; ansic: 217,704; f90: 6,041; makefile: 5,100; sh: 326; python: 270; xml: 182
file content (242 lines) | stat: -rw-r--r-- 6,879 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
*> \brief \b CTBT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CTBT02( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, X,
*                          LDX, B, LDB, WORK, RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            KD, LDAB, LDB, LDX, N, NRHS
*       REAL               RESID
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * )
*       COMPLEX            AB( LDAB, * ), B( LDB, * ), WORK( * ),
*      $                   X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CTBT02 computes the residual for the computed solution to a
*> triangular system of linear equations op(A)*X = B, when A is a
*> triangular band matrix. The test ratio is the maximum over
*>    norm(b - op(A)*x) / ( ||op(A)||_1 * norm(x) * EPS ),
*> where op(A) = A, A**T, or A**H, b is the column of B, x is the
*> solution vector, and EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the operation applied to A.
*>          = 'N':  A    * X = B  (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals or subdiagonals of the
*>          triangular band matrix A.  KD >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices X and B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDA,N)
*>          The upper or lower triangular band matrix A, stored in the
*>          first kd+1 rows of the array. The j-th column of A is stored
*>          in the j-th column of the array AB as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= max(1,KD+1).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX array, dimension (LDX,NRHS)
*>          The computed solution vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,NRHS)
*>          The right hand side vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          The maximum over the number of right hand sides of
*>          norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CTBT02( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB, X,
     $                   LDX, B, LDB, WORK, RWORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            KD, LDAB, LDB, LDX, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            AB( LDAB, * ), B( LDB, * ), WORK( * ),
     $                   X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      REAL               ANORM, BNORM, EPS, XNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               CLANTB, SCASUM, SLAMCH
      EXTERNAL           LSAME, CLANTB, SCASUM, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CAXPY, CCOPY, CTBMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0 or NRHS = 0
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Compute the 1-norm of op(A).
*
      IF( LSAME( TRANS, 'N' ) ) THEN
         ANORM = CLANTB( '1', UPLO, DIAG, N, KD, AB, LDAB, RWORK )
      ELSE
         ANORM = CLANTB( 'I', UPLO, DIAG, N, KD, AB, LDAB, RWORK )
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
*     Compute the maximum over the number of right hand sides of
*        norm(op(A)*x - b) / ( norm(op(A)) * norm(x) * EPS ).
*
      RESID = ZERO
      DO 10 J = 1, NRHS
         CALL CCOPY( N, X( 1, J ), 1, WORK, 1 )
         CALL CTBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
         CALL CAXPY( N, CMPLX( -ONE ), B( 1, J ), 1, WORK, 1 )
         BNORM = SCASUM( N, WORK, 1 )
         XNORM = SCASUM( N, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
         END IF
   10 CONTINUE
*
      RETURN
*
*     End of CTBT02
*
      END