1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
*> \brief \b DGBT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
* RESID )
*
* .. Scalar Arguments ..
* INTEGER KL, KU, LDA, LDAFAC, M, N
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGBT01 reconstructs a band matrix A from its L*U factorization and
*> computes the residual:
*> norm(L*U - A) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*>
*> The expression L*U - A is computed one column at a time, so A and
*> AFAC are not modified.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The number of subdiagonals within the band of A. KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The number of superdiagonals within the band of A. KU >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The original matrix A in band storage, stored in rows 1 to
*> KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER.
*> The leading dimension of the array A. LDA >= max(1,KL+KU+1).
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
*> The factored form of the matrix A. AFAC contains the banded
*> factors L and U from the L*U factorization, as computed by
*> DGBTRF. U is stored as an upper triangular band matrix with
*> KL+KU superdiagonals in rows 1 to KL+KU+1, and the
*> multipliers used during the factorization are stored in rows
*> KL+KU+2 to 2*KL+KU+1. See DGBTRF for further details.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC.
*> LDAFAC >= max(1,2*KL*KU+1).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (min(M,N))
*> The pivot indices from DGBTRF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (2*KL+KU+1)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> norm(L*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
$ RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER KL, KU, LDA, LDAFAC, M, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
DOUBLE PRECISION ANORM, EPS, T
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH
EXTERNAL DASUM, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick exit if M = 0 or N = 0.
*
RESID = ZERO
IF( M.LE.0 .OR. N.LE.0 )
$ RETURN
*
* Determine EPS and the norm of A.
*
EPS = DLAMCH( 'Epsilon' )
KD = KU + 1
ANORM = ZERO
DO 10 J = 1, N
I1 = MAX( KD+1-J, 1 )
I2 = MIN( KD+M-J, KL+KD )
IF( I2.GE.I1 )
$ ANORM = MAX( ANORM, DASUM( I2-I1+1, A( I1, J ), 1 ) )
10 CONTINUE
*
* Compute one column at a time of L*U - A.
*
KD = KL + KU + 1
DO 40 J = 1, N
*
* Copy the J-th column of U to WORK.
*
JU = MIN( KL+KU, J-1 )
JL = MIN( KL, M-J )
LENJ = MIN( M, J ) - J + JU + 1
IF( LENJ.GT.0 ) THEN
CALL DCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
DO 20 I = LENJ + 1, JU + JL + 1
WORK( I ) = ZERO
20 CONTINUE
*
* Multiply by the unit lower triangular matrix L. Note that L
* is stored as a product of transformations and permutations.
*
DO 30 I = MIN( M-1, J ), J - JU, -1
IL = MIN( KL, M-I )
IF( IL.GT.0 ) THEN
IW = I - J + JU + 1
T = WORK( IW )
CALL DAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
$ 1 )
IP = IPIV( I )
IF( I.NE.IP ) THEN
IP = IP - J + JU + 1
WORK( IW ) = WORK( IP )
WORK( IP ) = T
END IF
END IF
30 CONTINUE
*
* Subtract the corresponding column of A.
*
JUA = MIN( JU, KU )
IF( JUA+JL+1.GT.0 )
$ CALL DAXPY( JUA+JL+1, -ONE, A( KU+1-JUA, J ), 1,
$ WORK( JU+1-JUA ), 1 )
*
* Compute the 1-norm of the column.
*
RESID = MAX( RESID, DASUM( JU+JL+1, WORK, 1 ) )
END IF
40 CONTINUE
*
* Compute norm(L*U - A) / ( N * norm(A) * EPS )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of DGBT01
*
END
|