1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
*> \brief \b DTPT02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DTPT02( UPLO, TRANS, DIAG, N, NRHS, AP, X, LDX, B, LDB,
* WORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER LDB, LDX, N, NRHS
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* DOUBLE PRECISION AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DTPT02 computes the residual for the computed solution to a
*> triangular system of linear equations op(A)*X = B, when the
*> triangular matrix A is stored in packed format. The test ratio is
*> the maximum over
*> norm(b - op(A)*x) / ( ||op(A)||_1 * norm(x) * EPS ),
*> where op(A) = A or A**T, b is the column of B, x is the solution
*> vector, and EPS is the machine epsilon.
*> The norm used is the 1-norm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A is upper or lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the operation applied to A.
*> = 'N': A * X = B (No transpose)
*> = 'T': A**T * X = B (Transpose)
*> = 'C': A**H * X = B (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices X and B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*> The upper or lower triangular matrix A, packed columnwise in
*> a linear array. The j-th column of A is stored in the array
*> AP as follows:
*> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L',
*> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> The computed solution vectors for the system of linear
*> equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*> The right hand side vectors for the system of linear
*> equations.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> The maximum over the number of right hand sides of
*> norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DTPT02( UPLO, TRANS, DIAG, N, NRHS, AP, X, LDX, B, LDB,
$ WORK, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER LDB, LDX, N, NRHS
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * ), B( LDB, * ), WORK( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER J
DOUBLE PRECISION ANORM, BNORM, EPS, XNORM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DASUM, DLAMCH, DLANTP
EXTERNAL LSAME, DASUM, DLAMCH, DLANTP
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DTPMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0 or NRHS = 0
*
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Compute the 1-norm of op(A).
*
IF( LSAME( TRANS, 'N' ) ) THEN
ANORM = DLANTP( '1', UPLO, DIAG, N, AP, WORK )
ELSE
ANORM = DLANTP( 'I', UPLO, DIAG, N, AP, WORK )
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = DLAMCH( 'Epsilon' )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the maximum over the number of right hand sides of
* norm(op(A)*X - B) / ( norm(op(A)) * norm(X) * EPS ).
*
RESID = ZERO
DO 10 J = 1, NRHS
CALL DCOPY( N, X( 1, J ), 1, WORK, 1 )
CALL DTPMV( UPLO, TRANS, DIAG, N, AP, WORK, 1 )
CALL DAXPY( N, -ONE, B( 1, J ), 1, WORK, 1 )
BNORM = DASUM( N, WORK, 1 )
XNORM = DASUM( N, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
END IF
10 CONTINUE
*
RETURN
*
* End of DTPT02
*
END
|