File: slaptm.f

package info (click to toggle)
lapack 3.12.1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,908 kB
  • sloc: fortran: 622,840; ansic: 217,704; f90: 6,041; makefile: 5,100; sh: 326; python: 270; xml: 182
file content (200 lines) | stat: -rw-r--r-- 5,302 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
*> \brief \b SLAPTM
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE SLAPTM( N, NRHS, ALPHA, D, E, X, LDX, BETA, B, LDB )
*
*       .. Scalar Arguments ..
*       INTEGER            LDB, LDX, N, NRHS
*       REAL               ALPHA, BETA
*       ..
*       .. Array Arguments ..
*       REAL               B( LDB, * ), D( * ), E( * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> SLAPTM multiplies an N by NRHS matrix X by a symmetric tridiagonal
*> matrix A and stores the result in a matrix B.  The operation has the
*> form
*>
*>    B := alpha * A * X + beta * B
*>
*> where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices X and B.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*>          ALPHA is REAL
*>          The scalar alpha.  ALPHA must be 1. or -1.; otherwise,
*>          it is assumed to be 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*>          D is REAL array, dimension (N)
*>          The n diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*>          E is REAL array, dimension (N-1)
*>          The (n-1) subdiagonal or superdiagonal elements of A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is REAL array, dimension (LDX,NRHS)
*>          The N by NRHS matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(N,1).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*>          BETA is REAL
*>          The scalar beta.  BETA must be 0., 1., or -1.; otherwise,
*>          it is assumed to be 1.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          On entry, the N by NRHS matrix B.
*>          On exit, B is overwritten by the matrix expression
*>          B := alpha * A * X + beta * B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(N,1).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
*  =====================================================================
      SUBROUTINE SLAPTM( N, NRHS, ALPHA, D, E, X, LDX, BETA, B, LDB )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            LDB, LDX, N, NRHS
      REAL               ALPHA, BETA
*     ..
*     .. Array Arguments ..
      REAL               B( LDB, * ), D( * ), E( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Multiply B by BETA if BETA.NE.1.
*
      IF( BETA.EQ.ZERO ) THEN
         DO 20 J = 1, NRHS
            DO 10 I = 1, N
               B( I, J ) = ZERO
   10       CONTINUE
   20    CONTINUE
      ELSE IF( BETA.EQ.-ONE ) THEN
         DO 40 J = 1, NRHS
            DO 30 I = 1, N
               B( I, J ) = -B( I, J )
   30       CONTINUE
   40    CONTINUE
      END IF
*
      IF( ALPHA.EQ.ONE ) THEN
*
*        Compute B := B + A*X
*
         DO 60 J = 1, NRHS
            IF( N.EQ.1 ) THEN
               B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
            ELSE
               B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
     $                     E( 1 )*X( 2, J )
               B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) +
     $                     D( N )*X( N, J )
               DO 50 I = 2, N - 1
                  B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) +
     $                        D( I )*X( I, J ) + E( I )*X( I+1, J )
   50          CONTINUE
            END IF
   60    CONTINUE
      ELSE IF( ALPHA.EQ.-ONE ) THEN
*
*        Compute B := B - A*X
*
         DO 80 J = 1, NRHS
            IF( N.EQ.1 ) THEN
               B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
            ELSE
               B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
     $                     E( 1 )*X( 2, J )
               B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) -
     $                     D( N )*X( N, J )
               DO 70 I = 2, N - 1
                  B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) -
     $                        D( I )*X( I, J ) - E( I )*X( I+1, J )
   70          CONTINUE
            END IF
   80    CONTINUE
      END IF
      RETURN
*
*     End of SLAPTM
*
      END