1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
*> \brief \b SLATTB
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB,
* LDAB, B, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER IMAT, INFO, KD, LDAB, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL AB( LDAB, * ), B( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLATTB generates a triangular test matrix in 2-dimensional storage.
*> IMAT and UPLO uniquely specify the properties of the test matrix,
*> which is returned in the array A.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IMAT
*> \verbatim
*> IMAT is INTEGER
*> An integer key describing which matrix to generate for this
*> path.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A will be upper or lower
*> triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies whether the matrix or its transpose will be used.
*> = 'N': No transpose
*> = 'T': Transpose
*> = 'C': Conjugate transpose (= transpose)
*> \endverbatim
*>
*> \param[out] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> The seed vector for the random number generator (used in
*> SLATMS). Modified on exit.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix to be generated.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of superdiagonals or subdiagonals of the banded
*> triangular matrix A. KD >= 0.
*> \endverbatim
*>
*> \param[out] AB
*> \verbatim
*> AB is REAL array, dimension (LDAB,N)
*> The upper or lower triangular banded matrix A, stored in the
*> first KD+1 rows of AB. Let j be a column of A, 1<=j<=n.
*> If UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j.
*> If UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SLATTB( IMAT, UPLO, TRANS, DIAG, ISEED, N, KD, AB,
$ LDAB, B, WORK, INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER IMAT, INFO, KD, LDAB, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL AB( LDAB, * ), B( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, TWO, ZERO
PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
CHARACTER DIST, PACKIT, TYPE
CHARACTER*3 PATH
INTEGER I, IOFF, IY, J, JCOUNT, KL, KU, LENJ, MODE
REAL ANORM, BIGNUM, BNORM, BSCAL, CNDNUM, PLUS1,
$ PLUS2, REXP, SFAC, SMLNUM, STAR1, TEXP, TLEFT,
$ TNORM, TSCAL, ULP, UNFL
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL SLAMCH, SLARND
EXTERNAL LSAME, ISAMAX, SLAMCH, SLARND
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SLARNV, SLATB4, SLATMS, SSCAL, SSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL, SIGN, SQRT
* ..
* .. Executable Statements ..
*
PATH( 1: 1 ) = 'Single precision'
PATH( 2: 3 ) = 'TB'
UNFL = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
SMLNUM = UNFL
BIGNUM = ( ONE-ULP ) / SMLNUM
IF( ( IMAT.GE.6 .AND. IMAT.LE.9 ) .OR. IMAT.EQ.17 ) THEN
DIAG = 'U'
ELSE
DIAG = 'N'
END IF
INFO = 0
*
* Quick return if N.LE.0.
*
IF( N.LE.0 )
$ RETURN
*
* Call SLATB4 to set parameters for SLATMS.
*
UPPER = LSAME( UPLO, 'U' )
IF( UPPER ) THEN
CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
KU = KD
IOFF = 1 + MAX( 0, KD-N+1 )
KL = 0
PACKIT = 'Q'
ELSE
CALL SLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
KL = KD
IOFF = 1
KU = 0
PACKIT = 'B'
END IF
*
* IMAT <= 5: Non-unit triangular matrix
*
IF( IMAT.LE.5 ) THEN
CALL SLATMS( N, N, DIST, ISEED, TYPE, B, MODE, CNDNUM, ANORM,
$ KL, KU, PACKIT, AB( IOFF, 1 ), LDAB, WORK, INFO )
*
* IMAT > 5: Unit triangular matrix
* The diagonal is deliberately set to something other than 1.
*
* IMAT = 6: Matrix is the identity
*
ELSE IF( IMAT.EQ.6 ) THEN
IF( UPPER ) THEN
DO 20 J = 1, N
DO 10 I = MAX( 1, KD+2-J ), KD
AB( I, J ) = ZERO
10 CONTINUE
AB( KD+1, J ) = J
20 CONTINUE
ELSE
DO 40 J = 1, N
AB( 1, J ) = J
DO 30 I = 2, MIN( KD+1, N-J+1 )
AB( I, J ) = ZERO
30 CONTINUE
40 CONTINUE
END IF
*
* IMAT > 6: Non-trivial unit triangular matrix
*
* A unit triangular matrix T with condition CNDNUM is formed.
* In this version, T only has bandwidth 2, the rest of it is zero.
*
ELSE IF( IMAT.LE.9 ) THEN
TNORM = SQRT( CNDNUM )
*
* Initialize AB to zero.
*
IF( UPPER ) THEN
DO 60 J = 1, N
DO 50 I = MAX( 1, KD+2-J ), KD
AB( I, J ) = ZERO
50 CONTINUE
AB( KD+1, J ) = REAL( J )
60 CONTINUE
ELSE
DO 80 J = 1, N
DO 70 I = 2, MIN( KD+1, N-J+1 )
AB( I, J ) = ZERO
70 CONTINUE
AB( 1, J ) = REAL( J )
80 CONTINUE
END IF
*
* Special case: T is tridiagonal. Set every other offdiagonal
* so that the matrix has norm TNORM+1.
*
IF( KD.EQ.1 ) THEN
IF( UPPER ) THEN
AB( 1, 2 ) = SIGN( TNORM, SLARND( 2, ISEED ) )
LENJ = ( N-3 ) / 2
CALL SLARNV( 2, ISEED, LENJ, WORK )
DO 90 J = 1, LENJ
AB( 1, 2*( J+1 ) ) = TNORM*WORK( J )
90 CONTINUE
ELSE
AB( 2, 1 ) = SIGN( TNORM, SLARND( 2, ISEED ) )
LENJ = ( N-3 ) / 2
CALL SLARNV( 2, ISEED, LENJ, WORK )
DO 100 J = 1, LENJ
AB( 2, 2*J+1 ) = TNORM*WORK( J )
100 CONTINUE
END IF
ELSE IF( KD.GT.1 ) THEN
*
* Form a unit triangular matrix T with condition CNDNUM. T is
* given by
* | 1 + * |
* | 1 + |
* T = | 1 + * |
* | 1 + |
* | 1 + * |
* | 1 + |
* | . . . |
* Each element marked with a '*' is formed by taking the product
* of the adjacent elements marked with '+'. The '*'s can be
* chosen freely, and the '+'s are chosen so that the inverse of
* T will have elements of the same magnitude as T.
*
* The two offdiagonals of T are stored in WORK.
*
STAR1 = SIGN( TNORM, SLARND( 2, ISEED ) )
SFAC = SQRT( TNORM )
PLUS1 = SIGN( SFAC, SLARND( 2, ISEED ) )
DO 110 J = 1, N, 2
PLUS2 = STAR1 / PLUS1
WORK( J ) = PLUS1
WORK( N+J ) = STAR1
IF( J+1.LE.N ) THEN
WORK( J+1 ) = PLUS2
WORK( N+J+1 ) = ZERO
PLUS1 = STAR1 / PLUS2
*
* Generate a new *-value with norm between sqrt(TNORM)
* and TNORM.
*
REXP = SLARND( 2, ISEED )
IF( REXP.LT.ZERO ) THEN
STAR1 = -SFAC**( ONE-REXP )
ELSE
STAR1 = SFAC**( ONE+REXP )
END IF
END IF
110 CONTINUE
*
* Copy the tridiagonal T to AB.
*
IF( UPPER ) THEN
CALL SCOPY( N-1, WORK, 1, AB( KD, 2 ), LDAB )
CALL SCOPY( N-2, WORK( N+1 ), 1, AB( KD-1, 3 ), LDAB )
ELSE
CALL SCOPY( N-1, WORK, 1, AB( 2, 1 ), LDAB )
CALL SCOPY( N-2, WORK( N+1 ), 1, AB( 3, 1 ), LDAB )
END IF
END IF
*
* IMAT > 9: Pathological test cases. These triangular matrices
* are badly scaled or badly conditioned, so when used in solving a
* triangular system they may cause overflow in the solution vector.
*
ELSE IF( IMAT.EQ.10 ) THEN
*
* Type 10: Generate a triangular matrix with elements between
* -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
* Make the right hand side large so that it requires scaling.
*
IF( UPPER ) THEN
DO 120 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
AB( KD+1, J ) = SIGN( TWO, AB( KD+1, J ) )
120 CONTINUE
ELSE
DO 130 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
IF( LENJ.GT.0 )
$ CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
AB( 1, J ) = SIGN( TWO, AB( 1, J ) )
130 CONTINUE
END IF
*
* Set the right hand side so that the largest value is BIGNUM.
*
CALL SLARNV( 2, ISEED, N, B )
IY = ISAMAX( N, B, 1 )
BNORM = ABS( B( IY ) )
BSCAL = BIGNUM / MAX( ONE, BNORM )
CALL SSCAL( N, BSCAL, B, 1 )
*
ELSE IF( IMAT.EQ.11 ) THEN
*
* Type 11: Make the first diagonal element in the solve small to
* cause immediate overflow when dividing by T(j,j).
* In type 11, the offdiagonal elements are small (CNORM(j) < 1).
*
CALL SLARNV( 2, ISEED, N, B )
TSCAL = ONE / REAL( KD+1 )
IF( UPPER ) THEN
DO 140 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
CALL SSCAL( LENJ-1, TSCAL, AB( KD+2-LENJ, J ), 1 )
AB( KD+1, J ) = SIGN( ONE, AB( KD+1, J ) )
140 CONTINUE
AB( KD+1, N ) = SMLNUM*AB( KD+1, N )
ELSE
DO 150 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
IF( LENJ.GT.1 )
$ CALL SSCAL( LENJ-1, TSCAL, AB( 2, J ), 1 )
AB( 1, J ) = SIGN( ONE, AB( 1, J ) )
150 CONTINUE
AB( 1, 1 ) = SMLNUM*AB( 1, 1 )
END IF
*
ELSE IF( IMAT.EQ.12 ) THEN
*
* Type 12: Make the first diagonal element in the solve small to
* cause immediate overflow when dividing by T(j,j).
* In type 12, the offdiagonal elements are O(1) (CNORM(j) > 1).
*
CALL SLARNV( 2, ISEED, N, B )
IF( UPPER ) THEN
DO 160 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
AB( KD+1, J ) = SIGN( ONE, AB( KD+1, J ) )
160 CONTINUE
AB( KD+1, N ) = SMLNUM*AB( KD+1, N )
ELSE
DO 170 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
AB( 1, J ) = SIGN( ONE, AB( 1, J ) )
170 CONTINUE
AB( 1, 1 ) = SMLNUM*AB( 1, 1 )
END IF
*
ELSE IF( IMAT.EQ.13 ) THEN
*
* Type 13: T is diagonal with small numbers on the diagonal to
* make the growth factor underflow, but a small right hand side
* chosen so that the solution does not overflow.
*
IF( UPPER ) THEN
JCOUNT = 1
DO 190 J = N, 1, -1
DO 180 I = MAX( 1, KD+1-( J-1 ) ), KD
AB( I, J ) = ZERO
180 CONTINUE
IF( JCOUNT.LE.2 ) THEN
AB( KD+1, J ) = SMLNUM
ELSE
AB( KD+1, J ) = ONE
END IF
JCOUNT = JCOUNT + 1
IF( JCOUNT.GT.4 )
$ JCOUNT = 1
190 CONTINUE
ELSE
JCOUNT = 1
DO 210 J = 1, N
DO 200 I = 2, MIN( N-J+1, KD+1 )
AB( I, J ) = ZERO
200 CONTINUE
IF( JCOUNT.LE.2 ) THEN
AB( 1, J ) = SMLNUM
ELSE
AB( 1, J ) = ONE
END IF
JCOUNT = JCOUNT + 1
IF( JCOUNT.GT.4 )
$ JCOUNT = 1
210 CONTINUE
END IF
*
* Set the right hand side alternately zero and small.
*
IF( UPPER ) THEN
B( 1 ) = ZERO
DO 220 I = N, 2, -2
B( I ) = ZERO
B( I-1 ) = SMLNUM
220 CONTINUE
ELSE
B( N ) = ZERO
DO 230 I = 1, N - 1, 2
B( I ) = ZERO
B( I+1 ) = SMLNUM
230 CONTINUE
END IF
*
ELSE IF( IMAT.EQ.14 ) THEN
*
* Type 14: Make the diagonal elements small to cause gradual
* overflow when dividing by T(j,j). To control the amount of
* scaling needed, the matrix is bidiagonal.
*
TEXP = ONE / REAL( KD+1 )
TSCAL = SMLNUM**TEXP
CALL SLARNV( 2, ISEED, N, B )
IF( UPPER ) THEN
DO 250 J = 1, N
DO 240 I = MAX( 1, KD+2-J ), KD
AB( I, J ) = ZERO
240 CONTINUE
IF( J.GT.1 .AND. KD.GT.0 )
$ AB( KD, J ) = -ONE
AB( KD+1, J ) = TSCAL
250 CONTINUE
B( N ) = ONE
ELSE
DO 270 J = 1, N
DO 260 I = 3, MIN( N-J+1, KD+1 )
AB( I, J ) = ZERO
260 CONTINUE
IF( J.LT.N .AND. KD.GT.0 )
$ AB( 2, J ) = -ONE
AB( 1, J ) = TSCAL
270 CONTINUE
B( 1 ) = ONE
END IF
*
ELSE IF( IMAT.EQ.15 ) THEN
*
* Type 15: One zero diagonal element.
*
IY = N / 2 + 1
IF( UPPER ) THEN
DO 280 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
IF( J.NE.IY ) THEN
AB( KD+1, J ) = SIGN( TWO, AB( KD+1, J ) )
ELSE
AB( KD+1, J ) = ZERO
END IF
280 CONTINUE
ELSE
DO 290 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
IF( J.NE.IY ) THEN
AB( 1, J ) = SIGN( TWO, AB( 1, J ) )
ELSE
AB( 1, J ) = ZERO
END IF
290 CONTINUE
END IF
CALL SLARNV( 2, ISEED, N, B )
CALL SSCAL( N, TWO, B, 1 )
*
ELSE IF( IMAT.EQ.16 ) THEN
*
* Type 16: Make the offdiagonal elements large to cause overflow
* when adding a column of T. In the non-transposed case, the
* matrix is constructed to cause overflow when adding a column in
* every other step.
*
TSCAL = UNFL / ULP
TSCAL = ( ONE-ULP ) / TSCAL
DO 310 J = 1, N
DO 300 I = 1, KD + 1
AB( I, J ) = ZERO
300 CONTINUE
310 CONTINUE
TEXP = ONE
IF( KD.GT.0 ) THEN
IF( UPPER ) THEN
DO 330 J = N, 1, -KD
DO 320 I = J, MAX( 1, J-KD+1 ), -2
AB( 1+( J-I ), I ) = -TSCAL / REAL( KD+2 )
AB( KD+1, I ) = ONE
B( I ) = TEXP*( ONE-ULP )
IF( I.GT.MAX( 1, J-KD+1 ) ) THEN
AB( 2+( J-I ), I-1 ) = -( TSCAL / REAL( KD+2 ) )
$ / REAL( KD+3 )
AB( KD+1, I-1 ) = ONE
B( I-1 ) = TEXP*REAL( ( KD+1 )*( KD+1 )+KD )
END IF
TEXP = TEXP*TWO
320 CONTINUE
B( MAX( 1, J-KD+1 ) ) = ( REAL( KD+2 ) /
$ REAL( KD+3 ) )*TSCAL
330 CONTINUE
ELSE
DO 350 J = 1, N, KD
TEXP = ONE
LENJ = MIN( KD+1, N-J+1 )
DO 340 I = J, MIN( N, J+KD-1 ), 2
AB( LENJ-( I-J ), J ) = -TSCAL / REAL( KD+2 )
AB( 1, J ) = ONE
B( J ) = TEXP*( ONE-ULP )
IF( I.LT.MIN( N, J+KD-1 ) ) THEN
AB( LENJ-( I-J+1 ), I+1 ) = -( TSCAL /
$ REAL( KD+2 ) ) / REAL( KD+3 )
AB( 1, I+1 ) = ONE
B( I+1 ) = TEXP*REAL( ( KD+1 )*( KD+1 )+KD )
END IF
TEXP = TEXP*TWO
340 CONTINUE
B( MIN( N, J+KD-1 ) ) = ( REAL( KD+2 ) /
$ REAL( KD+3 ) )*TSCAL
350 CONTINUE
END IF
ELSE
DO 360 J = 1, N
AB( 1, J ) = ONE
B( J ) = REAL( J )
360 CONTINUE
END IF
*
ELSE IF( IMAT.EQ.17 ) THEN
*
* Type 17: Generate a unit triangular matrix with elements
* between -1 and 1, and make the right hand side large so that it
* requires scaling.
*
IF( UPPER ) THEN
DO 370 J = 1, N
LENJ = MIN( J-1, KD )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+1-LENJ, J ) )
AB( KD+1, J ) = REAL( J )
370 CONTINUE
ELSE
DO 380 J = 1, N
LENJ = MIN( N-J, KD )
IF( LENJ.GT.0 )
$ CALL SLARNV( 2, ISEED, LENJ, AB( 2, J ) )
AB( 1, J ) = REAL( J )
380 CONTINUE
END IF
*
* Set the right hand side so that the largest value is BIGNUM.
*
CALL SLARNV( 2, ISEED, N, B )
IY = ISAMAX( N, B, 1 )
BNORM = ABS( B( IY ) )
BSCAL = BIGNUM / MAX( ONE, BNORM )
CALL SSCAL( N, BSCAL, B, 1 )
*
ELSE IF( IMAT.EQ.18 ) THEN
*
* Type 18: Generate a triangular matrix with elements between
* BIGNUM/KD and BIGNUM so that at least one of the column
* norms will exceed BIGNUM.
*
TLEFT = BIGNUM / MAX( ONE, REAL( KD ) )
TSCAL = BIGNUM*( REAL( KD ) / REAL( KD+1 ) )
IF( UPPER ) THEN
DO 400 J = 1, N
LENJ = MIN( J, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( KD+2-LENJ, J ) )
DO 390 I = KD + 2 - LENJ, KD + 1
AB( I, J ) = SIGN( TLEFT, AB( I, J ) ) +
$ TSCAL*AB( I, J )
390 CONTINUE
400 CONTINUE
ELSE
DO 420 J = 1, N
LENJ = MIN( N-J+1, KD+1 )
CALL SLARNV( 2, ISEED, LENJ, AB( 1, J ) )
DO 410 I = 1, LENJ
AB( I, J ) = SIGN( TLEFT, AB( I, J ) ) +
$ TSCAL*AB( I, J )
410 CONTINUE
420 CONTINUE
END IF
CALL SLARNV( 2, ISEED, N, B )
CALL SSCAL( N, TWO, B, 1 )
END IF
*
* Flip the matrix if the transpose will be used.
*
IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
IF( UPPER ) THEN
DO 430 J = 1, N / 2
LENJ = MIN( N-2*J+1, KD+1 )
CALL SSWAP( LENJ, AB( KD+1, J ), LDAB-1,
$ AB( KD+2-LENJ, N-J+1 ), -1 )
430 CONTINUE
ELSE
DO 440 J = 1, N / 2
LENJ = MIN( N-2*J+1, KD+1 )
CALL SSWAP( LENJ, AB( 1, J ), 1, AB( LENJ, N-J+2-LENJ ),
$ -LDAB+1 )
440 CONTINUE
END IF
END IF
*
RETURN
*
* End of SLATTB
*
END
|