1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807
|
*> \brief \b SLATTP
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SLATTP( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, B, WORK,
* INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, TRANS, UPLO
* INTEGER IMAT, INFO, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL A( * ), B( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLATTP generates a triangular test matrix in packed storage.
*> IMAT and UPLO uniquely specify the properties of the test
*> matrix, which is returned in the array AP.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] IMAT
*> \verbatim
*> IMAT is INTEGER
*> An integer key describing which matrix to generate for this
*> path.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A will be upper or lower
*> triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies whether the matrix or its transpose will be used.
*> = 'N': No transpose
*> = 'T': Transpose
*> = 'C': Conjugate transpose (= Transpose)
*> \endverbatim
*>
*> \param[out] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> The seed vector for the random number generator (used in
*> SLATMS). Modified on exit.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is REAL array, dimension (N*(N+1)/2)
*> The upper or lower triangular matrix A, packed columnwise in
*> a linear array. The j-th column of A is stored in the array
*> AP as follows:
*> if UPLO = 'U', AP((j-1)*j/2 + i) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L',
*> AP((j-1)*(n-j) + j*(j+1)/2 + i-j) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is REAL array, dimension (N)
*> The right hand side vector, if IMAT > 10.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (3*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SLATTP( IMAT, UPLO, TRANS, DIAG, ISEED, N, A, B, WORK,
$ INFO )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, UPLO
INTEGER IMAT, INFO, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL A( * ), B( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, TWO, ZERO
PARAMETER ( ONE = 1.0E+0, TWO = 2.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
CHARACTER DIST, PACKIT, TYPE
CHARACTER*3 PATH
INTEGER I, IY, J, JC, JCNEXT, JCOUNT, JJ, JL, JR, JX,
$ KL, KU, MODE
REAL ANORM, BIGNUM, BNORM, BSCAL, C, CNDNUM, PLUS1,
$ PLUS2, RA, RB, REXP, S, SFAC, SMLNUM, STAR1,
$ STEMP, T, TEXP, TLEFT, TSCAL, ULP, UNFL, X, Y,
$ Z
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ISAMAX
REAL SLAMCH, SLARND
EXTERNAL LSAME, ISAMAX, SLAMCH, SLARND
* ..
* .. External Subroutines ..
EXTERNAL SLARNV, SLATB4, SLATMS, SROT, SROTG, SSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, REAL, SIGN, SQRT
* ..
* .. Executable Statements ..
*
PATH( 1: 1 ) = 'Single precision'
PATH( 2: 3 ) = 'TP'
UNFL = SLAMCH( 'Safe minimum' )
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
SMLNUM = UNFL
BIGNUM = ( ONE-ULP ) / SMLNUM
IF( ( IMAT.GE.7 .AND. IMAT.LE.10 ) .OR. IMAT.EQ.18 ) THEN
DIAG = 'U'
ELSE
DIAG = 'N'
END IF
INFO = 0
*
* Quick return if N.LE.0.
*
IF( N.LE.0 )
$ RETURN
*
* Call SLATB4 to set parameters for SLATMS.
*
UPPER = LSAME( UPLO, 'U' )
IF( UPPER ) THEN
CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
PACKIT = 'C'
ELSE
CALL SLATB4( PATH, -IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ CNDNUM, DIST )
PACKIT = 'R'
END IF
*
* IMAT <= 6: Non-unit triangular matrix
*
IF( IMAT.LE.6 ) THEN
CALL SLATMS( N, N, DIST, ISEED, TYPE, B, MODE, CNDNUM, ANORM,
$ KL, KU, PACKIT, A, N, WORK, INFO )
*
* IMAT > 6: Unit triangular matrix
* The diagonal is deliberately set to something other than 1.
*
* IMAT = 7: Matrix is the identity
*
ELSE IF( IMAT.EQ.7 ) THEN
IF( UPPER ) THEN
JC = 1
DO 20 J = 1, N
DO 10 I = 1, J - 1
A( JC+I-1 ) = ZERO
10 CONTINUE
A( JC+J-1 ) = J
JC = JC + J
20 CONTINUE
ELSE
JC = 1
DO 40 J = 1, N
A( JC ) = J
DO 30 I = J + 1, N
A( JC+I-J ) = ZERO
30 CONTINUE
JC = JC + N - J + 1
40 CONTINUE
END IF
*
* IMAT > 7: Non-trivial unit triangular matrix
*
* Generate a unit triangular matrix T with condition CNDNUM by
* forming a triangular matrix with known singular values and
* filling in the zero entries with Givens rotations.
*
ELSE IF( IMAT.LE.10 ) THEN
IF( UPPER ) THEN
JC = 0
DO 60 J = 1, N
DO 50 I = 1, J - 1
A( JC+I ) = ZERO
50 CONTINUE
A( JC+J ) = J
JC = JC + J
60 CONTINUE
ELSE
JC = 1
DO 80 J = 1, N
A( JC ) = J
DO 70 I = J + 1, N
A( JC+I-J ) = ZERO
70 CONTINUE
JC = JC + N - J + 1
80 CONTINUE
END IF
*
* Since the trace of a unit triangular matrix is 1, the product
* of its singular values must be 1. Let s = sqrt(CNDNUM),
* x = sqrt(s) - 1/sqrt(s), y = sqrt(2/(n-2))*x, and z = x**2.
* The following triangular matrix has singular values s, 1, 1,
* ..., 1, 1/s:
*
* 1 y y y ... y y z
* 1 0 0 ... 0 0 y
* 1 0 ... 0 0 y
* . ... . . .
* . . . .
* 1 0 y
* 1 y
* 1
*
* To fill in the zeros, we first multiply by a matrix with small
* condition number of the form
*
* 1 0 0 0 0 ...
* 1 + * 0 0 ...
* 1 + 0 0 0
* 1 + * 0 0
* 1 + 0 0
* ...
* 1 + 0
* 1 0
* 1
*
* Each element marked with a '*' is formed by taking the product
* of the adjacent elements marked with '+'. The '*'s can be
* chosen freely, and the '+'s are chosen so that the inverse of
* T will have elements of the same magnitude as T. If the *'s in
* both T and inv(T) have small magnitude, T is well conditioned.
* The two offdiagonals of T are stored in WORK.
*
* The product of these two matrices has the form
*
* 1 y y y y y . y y z
* 1 + * 0 0 . 0 0 y
* 1 + 0 0 . 0 0 y
* 1 + * . . . .
* 1 + . . . .
* . . . . .
* . . . .
* 1 + y
* 1 y
* 1
*
* Now we multiply by Givens rotations, using the fact that
*
* [ c s ] [ 1 w ] [ -c -s ] = [ 1 -w ]
* [ -s c ] [ 0 1 ] [ s -c ] [ 0 1 ]
* and
* [ -c -s ] [ 1 0 ] [ c s ] = [ 1 0 ]
* [ s -c ] [ w 1 ] [ -s c ] [ -w 1 ]
*
* where c = w / sqrt(w**2+4) and s = 2 / sqrt(w**2+4).
*
STAR1 = 0.25
SFAC = 0.5
PLUS1 = SFAC
DO 90 J = 1, N, 2
PLUS2 = STAR1 / PLUS1
WORK( J ) = PLUS1
WORK( N+J ) = STAR1
IF( J+1.LE.N ) THEN
WORK( J+1 ) = PLUS2
WORK( N+J+1 ) = ZERO
PLUS1 = STAR1 / PLUS2
REXP = SLARND( 2, ISEED )
STAR1 = STAR1*( SFAC**REXP )
IF( REXP.LT.ZERO ) THEN
STAR1 = -SFAC**( ONE-REXP )
ELSE
STAR1 = SFAC**( ONE+REXP )
END IF
END IF
90 CONTINUE
*
X = SQRT( CNDNUM ) - ONE / SQRT( CNDNUM )
IF( N.GT.2 ) THEN
Y = SQRT( TWO / REAL( N-2 ) )*X
ELSE
Y = ZERO
END IF
Z = X*X
*
IF( UPPER ) THEN
*
* Set the upper triangle of A with a unit triangular matrix
* of known condition number.
*
JC = 1
DO 100 J = 2, N
A( JC+1 ) = Y
IF( J.GT.2 )
$ A( JC+J-1 ) = WORK( J-2 )
IF( J.GT.3 )
$ A( JC+J-2 ) = WORK( N+J-3 )
JC = JC + J
100 CONTINUE
JC = JC - N
A( JC+1 ) = Z
DO 110 J = 2, N - 1
A( JC+J ) = Y
110 CONTINUE
ELSE
*
* Set the lower triangle of A with a unit triangular matrix
* of known condition number.
*
DO 120 I = 2, N - 1
A( I ) = Y
120 CONTINUE
A( N ) = Z
JC = N + 1
DO 130 J = 2, N - 1
A( JC+1 ) = WORK( J-1 )
IF( J.LT.N-1 )
$ A( JC+2 ) = WORK( N+J-1 )
A( JC+N-J ) = Y
JC = JC + N - J + 1
130 CONTINUE
END IF
*
* Fill in the zeros using Givens rotations
*
IF( UPPER ) THEN
JC = 1
DO 150 J = 1, N - 1
JCNEXT = JC + J
RA = A( JCNEXT+J-1 )
RB = TWO
CALL SROTG( RA, RB, C, S )
*
* Multiply by [ c s; -s c] on the left.
*
IF( N.GT.J+1 ) THEN
JX = JCNEXT + J
DO 140 I = J + 2, N
STEMP = C*A( JX+J ) + S*A( JX+J+1 )
A( JX+J+1 ) = -S*A( JX+J ) + C*A( JX+J+1 )
A( JX+J ) = STEMP
JX = JX + I
140 CONTINUE
END IF
*
* Multiply by [-c -s; s -c] on the right.
*
IF( J.GT.1 )
$ CALL SROT( J-1, A( JCNEXT ), 1, A( JC ), 1, -C, -S )
*
* Negate A(J,J+1).
*
A( JCNEXT+J-1 ) = -A( JCNEXT+J-1 )
JC = JCNEXT
150 CONTINUE
ELSE
JC = 1
DO 170 J = 1, N - 1
JCNEXT = JC + N - J + 1
RA = A( JC+1 )
RB = TWO
CALL SROTG( RA, RB, C, S )
*
* Multiply by [ c -s; s c] on the right.
*
IF( N.GT.J+1 )
$ CALL SROT( N-J-1, A( JCNEXT+1 ), 1, A( JC+2 ), 1, C,
$ -S )
*
* Multiply by [-c s; -s -c] on the left.
*
IF( J.GT.1 ) THEN
JX = 1
DO 160 I = 1, J - 1
STEMP = -C*A( JX+J-I ) + S*A( JX+J-I+1 )
A( JX+J-I+1 ) = -S*A( JX+J-I ) - C*A( JX+J-I+1 )
A( JX+J-I ) = STEMP
JX = JX + N - I + 1
160 CONTINUE
END IF
*
* Negate A(J+1,J).
*
A( JC+1 ) = -A( JC+1 )
JC = JCNEXT
170 CONTINUE
END IF
*
* IMAT > 10: Pathological test cases. These triangular matrices
* are badly scaled or badly conditioned, so when used in solving a
* triangular system they may cause overflow in the solution vector.
*
ELSE IF( IMAT.EQ.11 ) THEN
*
* Type 11: Generate a triangular matrix with elements between
* -1 and 1. Give the diagonal norm 2 to make it well-conditioned.
* Make the right hand side large so that it requires scaling.
*
IF( UPPER ) THEN
JC = 1
DO 180 J = 1, N
CALL SLARNV( 2, ISEED, J, A( JC ) )
A( JC+J-1 ) = SIGN( TWO, A( JC+J-1 ) )
JC = JC + J
180 CONTINUE
ELSE
JC = 1
DO 190 J = 1, N
CALL SLARNV( 2, ISEED, N-J+1, A( JC ) )
A( JC ) = SIGN( TWO, A( JC ) )
JC = JC + N - J + 1
190 CONTINUE
END IF
*
* Set the right hand side so that the largest value is BIGNUM.
*
CALL SLARNV( 2, ISEED, N, B )
IY = ISAMAX( N, B, 1 )
BNORM = ABS( B( IY ) )
BSCAL = BIGNUM / MAX( ONE, BNORM )
CALL SSCAL( N, BSCAL, B, 1 )
*
ELSE IF( IMAT.EQ.12 ) THEN
*
* Type 12: Make the first diagonal element in the solve small to
* cause immediate overflow when dividing by T(j,j).
* In type 12, the offdiagonal elements are small (CNORM(j) < 1).
*
CALL SLARNV( 2, ISEED, N, B )
TSCAL = ONE / MAX( ONE, REAL( N-1 ) )
IF( UPPER ) THEN
JC = 1
DO 200 J = 1, N
CALL SLARNV( 2, ISEED, J-1, A( JC ) )
CALL SSCAL( J-1, TSCAL, A( JC ), 1 )
A( JC+J-1 ) = SIGN( ONE, SLARND( 2, ISEED ) )
JC = JC + J
200 CONTINUE
A( N*( N+1 ) / 2 ) = SMLNUM
ELSE
JC = 1
DO 210 J = 1, N
CALL SLARNV( 2, ISEED, N-J, A( JC+1 ) )
CALL SSCAL( N-J, TSCAL, A( JC+1 ), 1 )
A( JC ) = SIGN( ONE, SLARND( 2, ISEED ) )
JC = JC + N - J + 1
210 CONTINUE
A( 1 ) = SMLNUM
END IF
*
ELSE IF( IMAT.EQ.13 ) THEN
*
* Type 13: Make the first diagonal element in the solve small to
* cause immediate overflow when dividing by T(j,j).
* In type 13, the offdiagonal elements are O(1) (CNORM(j) > 1).
*
CALL SLARNV( 2, ISEED, N, B )
IF( UPPER ) THEN
JC = 1
DO 220 J = 1, N
CALL SLARNV( 2, ISEED, J-1, A( JC ) )
A( JC+J-1 ) = SIGN( ONE, SLARND( 2, ISEED ) )
JC = JC + J
220 CONTINUE
A( N*( N+1 ) / 2 ) = SMLNUM
ELSE
JC = 1
DO 230 J = 1, N
CALL SLARNV( 2, ISEED, N-J, A( JC+1 ) )
A( JC ) = SIGN( ONE, SLARND( 2, ISEED ) )
JC = JC + N - J + 1
230 CONTINUE
A( 1 ) = SMLNUM
END IF
*
ELSE IF( IMAT.EQ.14 ) THEN
*
* Type 14: T is diagonal with small numbers on the diagonal to
* make the growth factor underflow, but a small right hand side
* chosen so that the solution does not overflow.
*
IF( UPPER ) THEN
JCOUNT = 1
JC = ( N-1 )*N / 2 + 1
DO 250 J = N, 1, -1
DO 240 I = 1, J - 1
A( JC+I-1 ) = ZERO
240 CONTINUE
IF( JCOUNT.LE.2 ) THEN
A( JC+J-1 ) = SMLNUM
ELSE
A( JC+J-1 ) = ONE
END IF
JCOUNT = JCOUNT + 1
IF( JCOUNT.GT.4 )
$ JCOUNT = 1
JC = JC - J + 1
250 CONTINUE
ELSE
JCOUNT = 1
JC = 1
DO 270 J = 1, N
DO 260 I = J + 1, N
A( JC+I-J ) = ZERO
260 CONTINUE
IF( JCOUNT.LE.2 ) THEN
A( JC ) = SMLNUM
ELSE
A( JC ) = ONE
END IF
JCOUNT = JCOUNT + 1
IF( JCOUNT.GT.4 )
$ JCOUNT = 1
JC = JC + N - J + 1
270 CONTINUE
END IF
*
* Set the right hand side alternately zero and small.
*
IF( UPPER ) THEN
B( 1 ) = ZERO
DO 280 I = N, 2, -2
B( I ) = ZERO
B( I-1 ) = SMLNUM
280 CONTINUE
ELSE
B( N ) = ZERO
DO 290 I = 1, N - 1, 2
B( I ) = ZERO
B( I+1 ) = SMLNUM
290 CONTINUE
END IF
*
ELSE IF( IMAT.EQ.15 ) THEN
*
* Type 15: Make the diagonal elements small to cause gradual
* overflow when dividing by T(j,j). To control the amount of
* scaling needed, the matrix is bidiagonal.
*
TEXP = ONE / MAX( ONE, REAL( N-1 ) )
TSCAL = SMLNUM**TEXP
CALL SLARNV( 2, ISEED, N, B )
IF( UPPER ) THEN
JC = 1
DO 310 J = 1, N
DO 300 I = 1, J - 2
A( JC+I-1 ) = ZERO
300 CONTINUE
IF( J.GT.1 )
$ A( JC+J-2 ) = -ONE
A( JC+J-1 ) = TSCAL
JC = JC + J
310 CONTINUE
B( N ) = ONE
ELSE
JC = 1
DO 330 J = 1, N
DO 320 I = J + 2, N
A( JC+I-J ) = ZERO
320 CONTINUE
IF( J.LT.N )
$ A( JC+1 ) = -ONE
A( JC ) = TSCAL
JC = JC + N - J + 1
330 CONTINUE
B( 1 ) = ONE
END IF
*
ELSE IF( IMAT.EQ.16 ) THEN
*
* Type 16: One zero diagonal element.
*
IY = N / 2 + 1
IF( UPPER ) THEN
JC = 1
DO 340 J = 1, N
CALL SLARNV( 2, ISEED, J, A( JC ) )
IF( J.NE.IY ) THEN
A( JC+J-1 ) = SIGN( TWO, A( JC+J-1 ) )
ELSE
A( JC+J-1 ) = ZERO
END IF
JC = JC + J
340 CONTINUE
ELSE
JC = 1
DO 350 J = 1, N
CALL SLARNV( 2, ISEED, N-J+1, A( JC ) )
IF( J.NE.IY ) THEN
A( JC ) = SIGN( TWO, A( JC ) )
ELSE
A( JC ) = ZERO
END IF
JC = JC + N - J + 1
350 CONTINUE
END IF
CALL SLARNV( 2, ISEED, N, B )
CALL SSCAL( N, TWO, B, 1 )
*
ELSE IF( IMAT.EQ.17 ) THEN
*
* Type 17: Make the offdiagonal elements large to cause overflow
* when adding a column of T. In the non-transposed case, the
* matrix is constructed to cause overflow when adding a column in
* every other step.
*
TSCAL = UNFL / ULP
TSCAL = ( ONE-ULP ) / TSCAL
DO 360 J = 1, N*( N+1 ) / 2
A( J ) = ZERO
360 CONTINUE
TEXP = ONE
IF( UPPER ) THEN
JC = ( N-1 )*N / 2 + 1
DO 370 J = N, 2, -2
A( JC ) = -TSCAL / REAL( N+1 )
A( JC+J-1 ) = ONE
B( J ) = TEXP*( ONE-ULP )
JC = JC - J + 1
A( JC ) = -( TSCAL / REAL( N+1 ) ) / REAL( N+2 )
A( JC+J-2 ) = ONE
B( J-1 ) = TEXP*REAL( N*N+N-1 )
TEXP = TEXP*TWO
JC = JC - J + 2
370 CONTINUE
B( 1 ) = ( REAL( N+1 ) / REAL( N+2 ) )*TSCAL
ELSE
JC = 1
DO 380 J = 1, N - 1, 2
A( JC+N-J ) = -TSCAL / REAL( N+1 )
A( JC ) = ONE
B( J ) = TEXP*( ONE-ULP )
JC = JC + N - J + 1
A( JC+N-J-1 ) = -( TSCAL / REAL( N+1 ) ) / REAL( N+2 )
A( JC ) = ONE
B( J+1 ) = TEXP*REAL( N*N+N-1 )
TEXP = TEXP*TWO
JC = JC + N - J
380 CONTINUE
B( N ) = ( REAL( N+1 ) / REAL( N+2 ) )*TSCAL
END IF
*
ELSE IF( IMAT.EQ.18 ) THEN
*
* Type 18: Generate a unit triangular matrix with elements
* between -1 and 1, and make the right hand side large so that it
* requires scaling.
*
IF( UPPER ) THEN
JC = 1
DO 390 J = 1, N
CALL SLARNV( 2, ISEED, J-1, A( JC ) )
A( JC+J-1 ) = ZERO
JC = JC + J
390 CONTINUE
ELSE
JC = 1
DO 400 J = 1, N
IF( J.LT.N )
$ CALL SLARNV( 2, ISEED, N-J, A( JC+1 ) )
A( JC ) = ZERO
JC = JC + N - J + 1
400 CONTINUE
END IF
*
* Set the right hand side so that the largest value is BIGNUM.
*
CALL SLARNV( 2, ISEED, N, B )
IY = ISAMAX( N, B, 1 )
BNORM = ABS( B( IY ) )
BSCAL = BIGNUM / MAX( ONE, BNORM )
CALL SSCAL( N, BSCAL, B, 1 )
*
ELSE IF( IMAT.EQ.19 ) THEN
*
* Type 19: Generate a triangular matrix with elements between
* BIGNUM/(n-1) and BIGNUM so that at least one of the column
* norms will exceed BIGNUM.
*
TLEFT = BIGNUM / MAX( ONE, REAL( N-1 ) )
TSCAL = BIGNUM*( REAL( N-1 ) / MAX( ONE, REAL( N ) ) )
IF( UPPER ) THEN
JC = 1
DO 420 J = 1, N
CALL SLARNV( 2, ISEED, J, A( JC ) )
DO 410 I = 1, J
A( JC+I-1 ) = SIGN( TLEFT, A( JC+I-1 ) ) +
$ TSCAL*A( JC+I-1 )
410 CONTINUE
JC = JC + J
420 CONTINUE
ELSE
JC = 1
DO 440 J = 1, N
CALL SLARNV( 2, ISEED, N-J+1, A( JC ) )
DO 430 I = J, N
A( JC+I-J ) = SIGN( TLEFT, A( JC+I-J ) ) +
$ TSCAL*A( JC+I-J )
430 CONTINUE
JC = JC + N - J + 1
440 CONTINUE
END IF
CALL SLARNV( 2, ISEED, N, B )
CALL SSCAL( N, TWO, B, 1 )
END IF
*
* Flip the matrix across its counter-diagonal if the transpose will
* be used.
*
IF( .NOT.LSAME( TRANS, 'N' ) ) THEN
IF( UPPER ) THEN
JJ = 1
JR = N*( N+1 ) / 2
DO 460 J = 1, N / 2
JL = JJ
DO 450 I = J, N - J
T = A( JR-I+J )
A( JR-I+J ) = A( JL )
A( JL ) = T
JL = JL + I
450 CONTINUE
JJ = JJ + J + 1
JR = JR - ( N-J+1 )
460 CONTINUE
ELSE
JL = 1
JJ = N*( N+1 ) / 2
DO 480 J = 1, N / 2
JR = JJ
DO 470 I = J, N - J
T = A( JL+I-J )
A( JL+I-J ) = A( JR )
A( JR ) = T
JR = JR - I
470 CONTINUE
JL = JL + N - J + 1
JJ = JJ - J - 1
480 CONTINUE
END IF
END IF
*
RETURN
*
* End of SLATTP
*
END
|