1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
*> \brief \b SLQT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SLQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
* RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* REAL AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
* $ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
* $ WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLQT03 tests SORMLQ, which computes Q*C, Q'*C, C*Q or C*Q'.
*>
*> SLQT03 compares the results of a call to SORMLQ with the results of
*> forming Q explicitly by a call to SORGLQ and then performing matrix
*> multiplication by a call to SGEMM.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows or columns of the matrix C; C is n-by-m if
*> Q is applied from the left, or m-by-n if Q is applied from
*> the right. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the orthogonal matrix Q. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines the
*> orthogonal matrix Q. N >= K >= 0.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*> AF is REAL array, dimension (LDA,N)
*> Details of the LQ factorization of an m-by-n matrix, as
*> returned by SGELQF. See SGELQF for further details.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is REAL array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] CC
*> \verbatim
*> CC is REAL array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is REAL array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays AF, C, CC, and Q.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is REAL array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors corresponding
*> to the LQ factorization in AF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of WORK. LWORK must be at least M, and should be
*> M*NB, where NB is the blocksize for this environment.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (4)
*> The test ratios compare two techniques for multiplying a
*> random matrix C by an n-by-n orthogonal matrix Q.
*> RESULT(1) = norm( Q*C - Q*C ) / ( N * norm(C) * EPS )
*> RESULT(2) = norm( C*Q - C*Q ) / ( N * norm(C) * EPS )
*> RESULT(3) = norm( Q'*C - Q'*C )/ ( N * norm(C) * EPS )
*> RESULT(4) = norm( C*Q' - C*Q' )/ ( N * norm(C) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SLQT03( M, N, K, AF, C, CC, Q, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL AF( LDA, * ), C( LDA, * ), CC( LDA, * ),
$ Q( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
$ WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE
PARAMETER ( ONE = 1.0E0 )
REAL ROGUE
PARAMETER ( ROGUE = -1.0E+10 )
* ..
* .. Local Scalars ..
CHARACTER SIDE, TRANS
INTEGER INFO, ISIDE, ITRANS, J, MC, NC
REAL CNORM, EPS, RESID
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANGE
EXTERNAL LSAME, SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SGEMM, SLACPY, SLARNV, SLASET, SORGLQ, SORMLQ
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 )
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, REAL
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEED / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
EPS = SLAMCH( 'Epsilon' )
*
* Copy the first k rows of the factorization to the array Q
*
CALL SLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
CALL SLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
* Generate the n-by-n matrix Q
*
SRNAMT = 'SORGLQ'
CALL SORGLQ( N, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
DO 30 ISIDE = 1, 2
IF( ISIDE.EQ.1 ) THEN
SIDE = 'L'
MC = N
NC = M
ELSE
SIDE = 'R'
MC = M
NC = N
END IF
*
* Generate MC by NC matrix C
*
DO 10 J = 1, NC
CALL SLARNV( 2, ISEED, MC, C( 1, J ) )
10 CONTINUE
CNORM = SLANGE( '1', MC, NC, C, LDA, RWORK )
IF( CNORM.EQ.0.0 )
$ CNORM = ONE
*
DO 20 ITRANS = 1, 2
IF( ITRANS.EQ.1 ) THEN
TRANS = 'N'
ELSE
TRANS = 'T'
END IF
*
* Copy C
*
CALL SLACPY( 'Full', MC, NC, C, LDA, CC, LDA )
*
* Apply Q or Q' to C
*
SRNAMT = 'SORMLQ'
CALL SORMLQ( SIDE, TRANS, MC, NC, K, AF, LDA, TAU, CC, LDA,
$ WORK, LWORK, INFO )
*
* Form explicit product and subtract
*
IF( LSAME( SIDE, 'L' ) ) THEN
CALL SGEMM( TRANS, 'No transpose', MC, NC, MC, -ONE, Q,
$ LDA, C, LDA, ONE, CC, LDA )
ELSE
CALL SGEMM( 'No transpose', TRANS, MC, NC, NC, -ONE, C,
$ LDA, Q, LDA, ONE, CC, LDA )
END IF
*
* Compute error in the difference
*
RESID = SLANGE( '1', MC, NC, CC, LDA, RWORK )
RESULT( ( ISIDE-1 )*2+ITRANS ) = RESID /
$ ( REAL( MAX( 1, N ) )*CNORM*EPS )
*
20 CONTINUE
30 CONTINUE
*
RETURN
*
* End of SLQT03
*
END
|