1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
*> \brief \b SPTT02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SPTT02( N, NRHS, D, E, X, LDX, B, LDB, RESID )
*
* .. Scalar Arguments ..
* INTEGER LDB, LDX, N, NRHS
* REAL RESID
* ..
* .. Array Arguments ..
* REAL B( LDB, * ), D( * ), E( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPTT02 computes the residual for the solution to a symmetric
*> tridiagonal system of equations:
*> RESID = norm(B - A*X) / (norm(A) * norm(X) * EPS),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices B and X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The n diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is REAL array, dimension (N-1)
*> The (n-1) subdiagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is REAL array, dimension (LDX,NRHS)
*> The n by nrhs matrix of solution vectors X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB,NRHS)
*> On entry, the n by nrhs matrix of right hand side vectors B.
*> On exit, B is overwritten with the difference B - A*X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(B - A*X) / (norm(A) * norm(X) * EPS)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SPTT02( N, NRHS, D, E, X, LDX, B, LDB, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDB, LDX, N, NRHS
REAL RESID
* ..
* .. Array Arguments ..
REAL B( LDB, * ), D( * ), E( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER J
REAL ANORM, BNORM, EPS, XNORM
* ..
* .. External Functions ..
REAL SASUM, SLAMCH, SLANST
EXTERNAL SASUM, SLAMCH, SLANST
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. External Subroutines ..
EXTERNAL SLAPTM
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Compute the 1-norm of the tridiagonal matrix A.
*
ANORM = SLANST( '1', N, D, E )
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute B - A*X.
*
CALL SLAPTM( N, NRHS, -ONE, D, E, X, LDX, ONE, B, LDB )
*
* Compute the maximum over the number of right hand sides of
* norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
RESID = ZERO
DO 10 J = 1, NRHS
BNORM = SASUM( N, B( 1, J ), 1 )
XNORM = SASUM( N, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM / ANORM ) / XNORM ) / EPS )
END IF
10 CONTINUE
*
RETURN
*
* End of SPTT02
*
END
|