1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
*> \brief \b SSYT01_3
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SSYT01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
* LDC, RWORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDA, LDAFAC, LDC, N
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
* $ E( * ), RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SSYT01_3 reconstructs a symmetric indefinite matrix A from its
*> block L*D*L' or U*D*U' factorization computed by SSYTRF_RK
*> (or SSYTRF_BK) and computes the residual
*> norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix and EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The original symmetric matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
*> Diagonal of the block diagonal matrix D and factors U or L
*> as computed by SSYTRF_RK and SSYTRF_BK:
*> a) ONLY diagonal elements of the symmetric block diagonal
*> matrix D on the diagonal of A, i.e. D(k,k) = A(k,k);
*> (superdiagonal (or subdiagonal) elements of D
*> should be provided on entry in array E), and
*> b) If UPLO = 'U': factor U in the superdiagonal part of A.
*> If UPLO = 'L': factor L in the subdiagonal part of A.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC.
*> LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N)
*> On entry, contains the superdiagonal (or subdiagonal)
*> elements of the symmetric block diagonal matrix D
*> with 1-by-1 or 2-by-2 diagonal blocks, where
*> If UPLO = 'U': E(i) = D(i-1,i),i=2:N, E(1) not referenced;
*> If UPLO = 'L': E(i) = D(i+1,i),i=1:N-1, E(N) not referenced.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from SSYTRF_RK (or SSYTRF_BK).
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is DOUBLE PRECISION array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SSYT01_3( UPLO, N, A, LDA, AFAC, LDAFAC, E, IPIV, C,
$ LDC, RWORK, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAFAC, LDC, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * ),
$ E( * ), RWORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
REAL ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANSY
EXTERNAL LSAME, SLAMCH, SLANSY
* ..
* .. External Subroutines ..
EXTERNAL SLASET, SLAVSY_ROOK, SSYCONVF_ROOK
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* a) Revert to multipliers of L
*
CALL SSYCONVF_ROOK( UPLO, 'R', N, AFAC, LDAFAC, E, IPIV, INFO )
*
* 1) Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
*
* 2) Initialize C to the identity matrix.
*
CALL SLASET( 'Full', N, N, ZERO, ONE, C, LDC )
*
* 3) Call SLAVSY_ROOK to form the product D * U' (or D * L' ).
*
CALL SLAVSY_ROOK( UPLO, 'Transpose', 'Non-unit', N, N, AFAC,
$ LDAFAC, IPIV, C, LDC, INFO )
*
* 4) Call SLAVSY_ROOK again to multiply by U (or L ).
*
CALL SLAVSY_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
$ LDAFAC, IPIV, C, LDC, INFO )
*
* 5) Compute the difference C - A.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO J = 1, N
DO I = 1, J
C( I, J ) = C( I, J ) - A( I, J )
END DO
END DO
ELSE
DO J = 1, N
DO I = J, N
C( I, J ) = C( I, J ) - A( I, J )
END DO
END DO
END IF
*
* 6) Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = SLANSY( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
END IF
*
* b) Convert to factor of L (or U)
*
CALL SSYCONVF_ROOK( UPLO, 'C', N, AFAC, LDAFAC, E, IPIV, INFO )
*
RETURN
*
* End of SSYT01_3
*
END
|