1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
|
*> \brief \b ZGTT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
* LDWORK, RWORK, RESID )
*
* .. Scalar Arguments ..
* INTEGER LDWORK, N
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
* $ DU2( * ), DUF( * ), WORK( LDWORK, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGTT01 reconstructs a tridiagonal matrix A from its LU factorization
*> and computes the residual
*> norm(L*U - A) / ( norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] DL
*> \verbatim
*> DL is COMPLEX*16 array, dimension (N-1)
*> The (n-1) sub-diagonal elements of A.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX*16 array, dimension (N)
*> The diagonal elements of A.
*> \endverbatim
*>
*> \param[in] DU
*> \verbatim
*> DU is COMPLEX*16 array, dimension (N-1)
*> The (n-1) super-diagonal elements of A.
*> \endverbatim
*>
*> \param[in] DLF
*> \verbatim
*> DLF is COMPLEX*16 array, dimension (N-1)
*> The (n-1) multipliers that define the matrix L from the
*> LU factorization of A.
*> \endverbatim
*>
*> \param[in] DF
*> \verbatim
*> DF is COMPLEX*16 array, dimension (N)
*> The n diagonal elements of the upper triangular matrix U from
*> the LU factorization of A.
*> \endverbatim
*>
*> \param[in] DUF
*> \verbatim
*> DUF is COMPLEX*16 array, dimension (N-1)
*> The (n-1) elements of the first super-diagonal of U.
*> \endverbatim
*>
*> \param[in] DU2
*> \verbatim
*> DU2 is COMPLEX*16 array, dimension (N-2)
*> The (n-2) elements of the second super-diagonal of U.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices; for 1 <= i <= n, row i of the matrix was
*> interchanged with row IPIV(i). IPIV(i) will always be either
*> i or i+1; IPIV(i) = i indicates a row interchange was not
*> required.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> The scaled residual: norm(L*U - A) / (norm(A) * EPS)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZGTT01( N, DL, D, DU, DLF, DF, DUF, DU2, IPIV, WORK,
$ LDWORK, RWORK, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDWORK, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 D( * ), DF( * ), DL( * ), DLF( * ), DU( * ),
$ DU2( * ), DUF( * ), WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, IP, J, LASTJ
DOUBLE PRECISION ANORM, EPS
COMPLEX*16 LI
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGT, ZLANHS
EXTERNAL DLAMCH, ZLANGT, ZLANHS
* ..
* .. Intrinsic Functions ..
INTRINSIC MIN
* ..
* .. External Subroutines ..
EXTERNAL ZAXPY, ZSWAP
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
EPS = DLAMCH( 'Epsilon' )
*
* Copy the matrix U to WORK.
*
DO 20 J = 1, N
DO 10 I = 1, N
WORK( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
DO 30 I = 1, N
IF( I.EQ.1 ) THEN
WORK( I, I ) = DF( I )
IF( N.GE.2 )
$ WORK( I, I+1 ) = DUF( I )
IF( N.GE.3 )
$ WORK( I, I+2 ) = DU2( I )
ELSE IF( I.EQ.N ) THEN
WORK( I, I ) = DF( I )
ELSE
WORK( I, I ) = DF( I )
WORK( I, I+1 ) = DUF( I )
IF( I.LT.N-1 )
$ WORK( I, I+2 ) = DU2( I )
END IF
30 CONTINUE
*
* Multiply on the left by L.
*
LASTJ = N
DO 40 I = N - 1, 1, -1
LI = DLF( I )
CALL ZAXPY( LASTJ-I+1, LI, WORK( I, I ), LDWORK,
$ WORK( I+1, I ), LDWORK )
IP = IPIV( I )
IF( IP.EQ.I ) THEN
LASTJ = MIN( I+2, N )
ELSE
CALL ZSWAP( LASTJ-I+1, WORK( I, I ), LDWORK, WORK( I+1, I ),
$ LDWORK )
END IF
40 CONTINUE
*
* Subtract the matrix A.
*
WORK( 1, 1 ) = WORK( 1, 1 ) - D( 1 )
IF( N.GT.1 ) THEN
WORK( 1, 2 ) = WORK( 1, 2 ) - DU( 1 )
WORK( N, N-1 ) = WORK( N, N-1 ) - DL( N-1 )
WORK( N, N ) = WORK( N, N ) - D( N )
DO 50 I = 2, N - 1
WORK( I, I-1 ) = WORK( I, I-1 ) - DL( I-1 )
WORK( I, I ) = WORK( I, I ) - D( I )
WORK( I, I+1 ) = WORK( I, I+1 ) - DU( I )
50 CONTINUE
END IF
*
* Compute the 1-norm of the tridiagonal matrix A.
*
ANORM = ZLANGT( '1', N, DL, D, DU )
*
* Compute the 1-norm of WORK, which is only guaranteed to be
* upper Hessenberg.
*
RESID = ZLANHS( '1', N, WORK, LDWORK, RWORK )
*
* Compute norm(L*U - A) / (norm(A) * EPS)
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( RESID / ANORM ) / EPS
END IF
*
RETURN
*
* End of ZGTT01
*
END
|