1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
*> \brief \b ZHPT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDC, N
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( * ), AFAC( * ), C( LDC, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZHPT01 reconstructs a Hermitian indefinite packed matrix A from its
*> block L*D*L' or U*D*U' factorization and computes the residual
*> norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix, EPS is the machine epsilon,
*> L' is the conjugate transpose of L, and U' is the conjugate transpose
*> of U.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (N*(N+1)/2)
*> The original Hermitian matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (N*(N+1)/2)
*> The factored form of the matrix A, stored as a packed
*> triangular matrix. AFAC contains the block diagonal matrix D
*> and the multipliers used to obtain the factor L or U from the
*> block L*D*L' or U*D*U' factorization as computed by ZHPTRF.
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from ZHPTRF.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is COMPLEX*16 array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZHPT01( UPLO, N, A, AFAC, IPIV, C, LDC, RWORK, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDC, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( * ), AFAC( * ), C( LDC, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J, JC
DOUBLE PRECISION ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANHE, ZLANHP
EXTERNAL LSAME, DLAMCH, ZLANHE, ZLANHP
* ..
* .. External Subroutines ..
EXTERNAL ZLASET, ZLAVHP
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DIMAG
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
*
* Check the imaginary parts of the diagonal elements and return with
* an error code if any are nonzero.
*
JC = 1
IF( LSAME( UPLO, 'U' ) ) THEN
DO 10 J = 1, N
IF( DIMAG( AFAC( JC ) ).NE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
JC = JC + J + 1
10 CONTINUE
ELSE
DO 20 J = 1, N
IF( DIMAG( AFAC( JC ) ).NE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
JC = JC + N - J + 1
20 CONTINUE
END IF
*
* Initialize C to the identity matrix.
*
CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
* Call ZLAVHP to form the product D * U' (or D * L' ).
*
CALL ZLAVHP( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, IPIV, C,
$ LDC, INFO )
*
* Call ZLAVHP again to multiply by U ( or L ).
*
CALL ZLAVHP( UPLO, 'No transpose', 'Unit', N, N, AFAC, IPIV, C,
$ LDC, INFO )
*
* Compute the difference C - A .
*
IF( LSAME( UPLO, 'U' ) ) THEN
JC = 0
DO 40 J = 1, N
DO 30 I = 1, J - 1
C( I, J ) = C( I, J ) - A( JC+I )
30 CONTINUE
C( J, J ) = C( J, J ) - DBLE( A( JC+J ) )
JC = JC + J
40 CONTINUE
ELSE
JC = 1
DO 60 J = 1, N
C( J, J ) = C( J, J ) - DBLE( A( JC ) )
DO 50 I = J + 1, N
C( I, J ) = C( I, J ) - A( JC+I-J )
50 CONTINUE
JC = JC + N - J + 1
60 CONTINUE
END IF
*
* Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = ZLANHE( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of ZHPT01
*
END
|