1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
|
*> \brief \b ZPBT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER KD, LDA, LDAFAC, N
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZPBT01 reconstructs a Hermitian positive definite band matrix A from
*> its L*L' or U'*U factorization and computes the residual
*> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*> norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon, L' is the conjugate transpose of
*> L, and U' is the conjugate transpose of U.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of super-diagonals of the matrix A if UPLO = 'U',
*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The original Hermitian band matrix A. If UPLO = 'U', the
*> upper triangular part of A is stored as a band matrix; if
*> UPLO = 'L', the lower triangular part of A is stored. The
*> columns of the appropriate triangle are stored in the columns
*> of A and the diagonals of the triangle are stored in the rows
*> of A. See ZPBTRF for further details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER.
*> The leading dimension of the array A. LDA >= max(1,KD+1).
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
*> The factored form of the matrix A. AFAC contains the factor
*> L or U from the L*L' or U'*U factorization in band storage
*> format, as computed by ZPBTRF.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC.
*> LDAFAC >= max(1,KD+1).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
$ RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KD, LDA, LDAFAC, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * )
* ..
*
* =====================================================================
*
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K, KC, KLEN, ML, MU
DOUBLE PRECISION AKK, ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANHB
COMPLEX*16 ZDOTC
EXTERNAL LSAME, DLAMCH, ZLANHB, ZDOTC
* ..
* .. External Subroutines ..
EXTERNAL ZDSCAL, ZHER, ZTRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DIMAG, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZLANHB( '1', UPLO, N, KD, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Check the imaginary parts of the diagonal elements and return with
* an error code if any are nonzero.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 10 J = 1, N
IF( DIMAG( AFAC( KD+1, J ) ).NE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
10 CONTINUE
ELSE
DO 20 J = 1, N
IF( DIMAG( AFAC( 1, J ) ).NE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
20 CONTINUE
END IF
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 30 K = N, 1, -1
KC = MAX( 1, KD+2-K )
KLEN = KD + 1 - KC
*
* Compute the (K,K) element of the result.
*
AKK = DBLE(
$ ZDOTC( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 ) )
AFAC( KD+1, K ) = AKK
*
* Compute the rest of column K.
*
IF( KLEN.GT.0 )
$ CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', KLEN,
$ AFAC( KD+1, K-KLEN ), LDAFAC-1,
$ AFAC( KC, K ), 1 )
*
30 CONTINUE
*
* UPLO = 'L': Compute the product L*L', overwriting L.
*
ELSE
DO 40 K = N, 1, -1
KLEN = MIN( KD, N-K )
*
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( KLEN.GT.0 )
$ CALL ZHER( 'Lower', KLEN, ONE, AFAC( 2, K ), 1,
$ AFAC( 1, K+1 ), LDAFAC-1 )
*
* Scale column K by the diagonal element.
*
AKK = DBLE( AFAC( 1, K ) )
CALL ZDSCAL( KLEN+1, AKK, AFAC( 1, K ), 1 )
*
40 CONTINUE
END IF
*
* Compute the difference L*L' - A or U'*U - A.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 60 J = 1, N
MU = MAX( 1, KD+2-J )
DO 50 I = MU, KD + 1
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
50 CONTINUE
60 CONTINUE
ELSE
DO 80 J = 1, N
ML = MIN( KD+1, N-J+1 )
DO 70 I = 1, ML
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
70 CONTINUE
80 CONTINUE
END IF
*
* Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
*
RESID = ZLANHB( '1', UPLO, N, KD, AFAC, LDAFAC, RWORK )
*
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of ZPBT01
*
END
|