1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
*> \brief \b ZPST01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
* PIV, RWORK, RESID, RANK )
*
* .. Scalar Arguments ..
* DOUBLE PRECISION RESID
* INTEGER LDA, LDAFAC, LDPERM, N, RANK
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ),
* $ PERM( LDPERM, * )
* DOUBLE PRECISION RWORK( * )
* INTEGER PIV( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZPST01 reconstructs an Hermitian positive semidefinite matrix A
*> from its L or U factors and the permutation matrix P and computes
*> the residual
*> norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
*> norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon, L' is the conjugate transpose of L,
*> and U' is the conjugate transpose of U.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The original Hermitian matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
*> The factor L or U from the L*L' or U'*U
*> factorization of A.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[out] PERM
*> \verbatim
*> PERM is COMPLEX*16 array, dimension (LDPERM,N)
*> Overwritten with the reconstructed matrix, and then with the
*> difference P*L*L'*P' - A (or P*U'*U*P' - A)
*> \endverbatim
*>
*> \param[in] LDPERM
*> \verbatim
*> LDPERM is INTEGER
*> The leading dimension of the array PERM.
*> LDAPERM >= max(1,N).
*> \endverbatim
*>
*> \param[in] PIV
*> \verbatim
*> PIV is INTEGER array, dimension (N)
*> PIV is such that the nonzero entries are
*> P( PIV( K ), K ) = 1.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*>
*> \param[in] RANK
*> \verbatim
*> RANK is INTEGER
*> number of nonzero singular values of A.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
$ PIV, RWORK, RESID, RANK )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
DOUBLE PRECISION RESID
INTEGER LDA, LDAFAC, LDPERM, N, RANK
CHARACTER UPLO
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), AFAC( LDAFAC, * ),
$ PERM( LDPERM, * )
DOUBLE PRECISION RWORK( * )
INTEGER PIV( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
COMPLEX*16 TC
DOUBLE PRECISION ANORM, EPS, TR
INTEGER I, J, K
* ..
* .. External Functions ..
COMPLEX*16 ZDOTC
DOUBLE PRECISION DLAMCH, ZLANHE
LOGICAL LSAME
EXTERNAL ZDOTC, DLAMCH, ZLANHE, LSAME
* ..
* .. External Subroutines ..
EXTERNAL ZHER, ZSCAL, ZTRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCONJG, DIMAG
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZLANHE( '1', UPLO, N, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Check the imaginary parts of the diagonal elements and return with
* an error code if any are nonzero.
*
DO 100 J = 1, N
IF( DIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
100 CONTINUE
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
IF( RANK.LT.N ) THEN
DO 120 J = RANK + 1, N
DO 110 I = RANK + 1, J
AFAC( I, J ) = CZERO
110 CONTINUE
120 CONTINUE
END IF
*
DO 130 K = N, 1, -1
*
* Compute the (K,K) element of the result.
*
TR = DBLE( ZDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) )
AFAC( K, K ) = TR
*
* Compute the rest of column K.
*
CALL ZTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
*
130 CONTINUE
*
* Compute the product L*L', overwriting L.
*
ELSE
*
IF( RANK.LT.N ) THEN
DO 150 J = RANK + 1, N
DO 140 I = J, N
AFAC( I, J ) = CZERO
140 CONTINUE
150 CONTINUE
END IF
*
DO 160 K = N, 1, -1
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( K+1.LE.N )
$ CALL ZHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
$ AFAC( K+1, K+1 ), LDAFAC )
*
* Scale column K by the diagonal element.
*
TC = AFAC( K, K )
CALL ZSCAL( N-K+1, TC, AFAC( K, K ), 1 )
160 CONTINUE
*
END IF
*
* Form P*L*L'*P' or P*U'*U*P'
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
DO 180 J = 1, N
DO 170 I = 1, N
IF( PIV( I ).LE.PIV( J ) ) THEN
IF( I.LE.J ) THEN
PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
ELSE
PERM( PIV( I ), PIV( J ) ) = DCONJG( AFAC( J, I ) )
END IF
END IF
170 CONTINUE
180 CONTINUE
*
*
ELSE
*
DO 200 J = 1, N
DO 190 I = 1, N
IF( PIV( I ).GE.PIV( J ) ) THEN
IF( I.GE.J ) THEN
PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
ELSE
PERM( PIV( I ), PIV( J ) ) = DCONJG( AFAC( J, I ) )
END IF
END IF
190 CONTINUE
200 CONTINUE
*
END IF
*
* Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A).
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 220 J = 1, N
DO 210 I = 1, J - 1
PERM( I, J ) = PERM( I, J ) - A( I, J )
210 CONTINUE
PERM( J, J ) = PERM( J, J ) - DBLE( A( J, J ) )
220 CONTINUE
ELSE
DO 240 J = 1, N
PERM( J, J ) = PERM( J, J ) - DBLE( A( J, J ) )
DO 230 I = J + 1, N
PERM( I, J ) = PERM( I, J ) - A( I, J )
230 CONTINUE
240 CONTINUE
END IF
*
* Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or
* ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ).
*
RESID = ZLANHE( '1', UPLO, N, PERM, LDAFAC, RWORK )
*
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of ZPST01
*
END
|