1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
*> \brief \b ZQRT01P
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZQRT01P( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
* RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RESULT( * ), RWORK( * )
* COMPLEX*16 A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
* $ R( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZQRT01P tests ZGEQRFP, which computes the QR factorization of an m-by-n
*> matrix A, and partially tests ZUNGQR which forms the m-by-m
*> orthogonal matrix Q.
*>
*> ZQRT01P compares R with Q'*A, and checks that Q is orthogonal.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The m-by-n matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is COMPLEX*16 array, dimension (LDA,N)
*> Details of the QR factorization of A, as returned by ZGEQRFP.
*> See ZGEQRFP for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX*16 array, dimension (LDA,M)
*> The m-by-m orthogonal matrix Q.
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*> R is COMPLEX*16 array, dimension (LDA,max(M,N))
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF, Q and R.
*> LDA >= max(M,N).
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is COMPLEX*16 array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors, as returned
*> by ZGEQRFP.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> The test ratios:
*> RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
*> RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZQRT01P( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RESULT( * ), RWORK( * )
COMPLEX*16 A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
$ R( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 ROGUE
PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
* ..
* .. Local Scalars ..
INTEGER INFO, MINMN
DOUBLE PRECISION ANORM, EPS, RESID
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
EXTERNAL DLAMCH, ZLANGE, ZLANSY
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZGEQRFP, ZHERK, ZLACPY, ZLASET, ZUNGQR
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, MAX, MIN
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
MINMN = MIN( M, N )
EPS = DLAMCH( 'Epsilon' )
*
* Copy the matrix A to the array AF.
*
CALL ZLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
* Factorize the matrix A in the array AF.
*
SRNAMT = 'ZGEQRFP'
CALL ZGEQRFP( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
* Copy details of Q
*
CALL ZLASET( 'Full', M, M, ROGUE, ROGUE, Q, LDA )
CALL ZLACPY( 'Lower', M-1, N, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
*
* Generate the m-by-m matrix Q
*
SRNAMT = 'ZUNGQR'
CALL ZUNGQR( M, M, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
* Copy R
*
CALL ZLASET( 'Full', M, N, DCMPLX( ZERO ), DCMPLX( ZERO ), R,
$ LDA )
CALL ZLACPY( 'Upper', M, N, AF, LDA, R, LDA )
*
* Compute R - Q'*A
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', M, N, M,
$ DCMPLX( -ONE ), Q, LDA, A, LDA, DCMPLX( ONE ), R,
$ LDA )
*
* Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
*
ANORM = ZLANGE( '1', M, N, A, LDA, RWORK )
RESID = ZLANGE( '1', M, N, R, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q'*Q
*
CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), R, LDA )
CALL ZHERK( 'Upper', 'Conjugate transpose', M, M, -ONE, Q, LDA,
$ ONE, R, LDA )
*
* Compute norm( I - Q'*Q ) / ( M * EPS ) .
*
RESID = ZLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / DBLE( MAX( 1, M ) ) ) / EPS
*
RETURN
*
* End of ZQRT01P
*
END
|