File: zsyt01_rook.f

package info (click to toggle)
lapack 3.12.1-4
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 78,908 kB
  • sloc: fortran: 622,840; ansic: 217,704; f90: 6,041; makefile: 5,100; sh: 326; python: 270; xml: 182
file content (224 lines) | stat: -rw-r--r-- 6,141 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
*> \brief \b ZSYT01_ROOK
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZSYT01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
*                          RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            LDA, LDAFAC, LDC, N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZSYT01_ROOK reconstructs a complex symmetric indefinite matrix A from its
*> block L*D*L' or U*D*U' factorization and computes the residual
*>    norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix, EPS is the machine epsilon,
*> L' is the transpose of L, and U' is the transpose of U.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          complex symmetric matrix A is stored:
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The original complex symmetric matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
*>          The factored form of the matrix A.  AFAC contains the block
*>          diagonal matrix D and the multipliers used to obtain the
*>          factor L or U from the block L*D*L' or U*D*U' factorization
*>          as computed by ZSYTRF_ROOK.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*>          LDAFAC is INTEGER
*>          The leading dimension of the array AFAC.  LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>          The pivot indices from ZSYTRF_ROOK.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*>          C is COMPLEX*16 array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C.  LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*>          If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZSYT01_ROOK( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C,
     $                    LDC, RWORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            LDA, LDAFAC, LDC, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I, INFO, J
      DOUBLE PRECISION   ANORM, EPS
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, ZLANSY
      EXTERNAL           LSAME, DLAMCH, ZLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZLASET, ZLAVSY_ROOK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = ZLANSY( '1', UPLO, N, A, LDA, RWORK )
*
*     Initialize C to the identity matrix.
*
      CALL ZLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
*     Call ZLAVSY_ROOK to form the product D * U' (or D * L' ).
*
      CALL ZLAVSY_ROOK( UPLO, 'Transpose', 'Non-unit', N, N, AFAC,
     $              LDAFAC, IPIV, C, LDC, INFO )
*
*     Call ZLAVSY_ROOK again to multiply by U (or L ).
*
      CALL ZLAVSY_ROOK( UPLO, 'No transpose', 'Unit', N, N, AFAC,
     $              LDAFAC, IPIV, C, LDC, INFO )
*
*     Compute the difference  C - A .
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         DO 20 J = 1, N
            DO 10 I = 1, J
               C( I, J ) = C( I, J ) - A( I, J )
   10       CONTINUE
   20    CONTINUE
      ELSE
         DO 40 J = 1, N
            DO 30 I = J, N
               C( I, J ) = C( I, J ) - A( I, J )
   30       CONTINUE
   40    CONTINUE
      END IF
*
*     Compute norm( C - A ) / ( N * norm(A) * EPS )
*
      RESID = ZLANSY( '1', UPLO, N, C, LDC, RWORK )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of ZSYT01_ROOK
*
      END