File: drotg.f90

package info (click to toggle)
lapack 3.12.1-6
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 78,912 kB
  • sloc: fortran: 622,840; ansic: 217,704; f90: 6,041; makefile: 5,100; sh: 326; python: 270; xml: 182
file content (150 lines) | stat: -rw-r--r-- 3,459 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
!> \brief \b DROTG
!
!  =========== DOCUMENTATION ===========
!
! Online html documentation available at
!            http://www.netlib.org/lapack/explore-html/
!
!> \par Purpose:
!  =============
!>
!> \verbatim
!>
!> DROTG constructs a plane rotation
!>    [  c  s ] [ a ] = [ r ]
!>    [ -s  c ] [ b ]   [ 0 ]
!> satisfying c**2 + s**2 = 1.
!>
!> The computation uses the formulas
!>    sigma = sgn(a)    if |a| >  |b|
!>          = sgn(b)    if |b| >= |a|
!>    r = sigma*sqrt( a**2 + b**2 )
!>    c = 1; s = 0      if r = 0
!>    c = a/r; s = b/r  if r != 0
!> The subroutine also computes
!>    z = s    if |a| > |b|,
!>      = 1/c  if |b| >= |a| and c != 0
!>      = 1    if c = 0
!> This allows c and s to be reconstructed from z as follows:
!>    If z = 1, set c = 0, s = 1.
!>    If |z| < 1, set c = sqrt(1 - z**2) and s = z.
!>    If |z| > 1, set c = 1/z and s = sqrt( 1 - c**2).
!>
!> \endverbatim
!>
!> @see lartg, @see lartgp
!
!  Arguments:
!  ==========
!
!> \param[in,out] A
!> \verbatim
!>          A is DOUBLE PRECISION
!>          On entry, the scalar a.
!>          On exit, the scalar r.
!> \endverbatim
!>
!> \param[in,out] B
!> \verbatim
!>          B is DOUBLE PRECISION
!>          On entry, the scalar b.
!>          On exit, the scalar z.
!> \endverbatim
!>
!> \param[out] C
!> \verbatim
!>          C is DOUBLE PRECISION
!>          The scalar c.
!> \endverbatim
!>
!> \param[out] S
!> \verbatim
!>          S is DOUBLE PRECISION
!>          The scalar s.
!> \endverbatim
!
!  Authors:
!  ========
!
!> \author Edward Anderson, Lockheed Martin
!
!> \par Contributors:
!  ==================
!>
!> Weslley Pereira, University of Colorado Denver, USA
!
!> \ingroup rotg
!
!> \par Further Details:
!  =====================
!>
!> \verbatim
!>
!>  Anderson E. (2017)
!>  Algorithm 978: Safe Scaling in the Level 1 BLAS
!>  ACM Trans Math Softw 44:1--28
!>  https://doi.org/10.1145/3061665
!>
!> \endverbatim
!
!  =====================================================================
subroutine DROTG( a, b, c, s )
   integer, parameter :: wp = kind(1.d0)
!
!  -- Reference BLAS level1 routine --
!  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
!  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
!
!  .. Constants ..
   real(wp), parameter :: zero = 0.0_wp
   real(wp), parameter :: one  = 1.0_wp
!  ..
!  .. Scaling constants ..
   real(wp), parameter :: safmin = real(radix(0._wp),wp)**max( &
      minexponent(0._wp)-1, &
      1-maxexponent(0._wp) &
   )
   real(wp), parameter :: safmax = real(radix(0._wp),wp)**max( &
      1-minexponent(0._wp), &
      maxexponent(0._wp)-1 &
   )
!  ..
!  .. Scalar Arguments ..
   real(wp) :: a, b, c, s
!  ..
!  .. Local Scalars ..
   real(wp) :: anorm, bnorm, scl, sigma, r, z
!  ..
   anorm = abs(a)
   bnorm = abs(b)
   if( bnorm == zero ) then
      c = one
      s = zero
      b = zero
   else if( anorm == zero ) then
      c = zero
      s = one
      a = b
      b = one
   else
      scl = min( safmax, max( safmin, anorm, bnorm ) )
      if( anorm > bnorm ) then
         sigma = sign(one,a)
      else
         sigma = sign(one,b)
      end if
      r = sigma*( scl*sqrt((a/scl)**2 + (b/scl)**2) )
      c = a/r
      s = b/r
      if( anorm > bnorm ) then
         z = s
      else if( c /= zero ) then
         z = one/c
      else
         z = one
      end if
      a = r
      b = z
   end if
   return
end subroutine