1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
*> \brief \b CLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLAQR1 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/claqr1.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/claqr1.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/claqr1.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLAQR1( N, H, LDH, S1, S2, V )
*
* .. Scalar Arguments ..
* COMPLEX S1, S2
* INTEGER LDH, N
* ..
* .. Array Arguments ..
* COMPLEX H( LDH, * ), V( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Given a 2-by-2 or 3-by-3 matrix H, CLAQR1 sets v to a
*> scalar multiple of the first column of the product
*>
*> (*) K = (H - s1*I)*(H - s2*I)
*>
*> scaling to avoid overflows and most underflows.
*>
*> This is useful for starting double implicit shift bulges
*> in the QR algorithm.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Order of the matrix H. N must be either 2 or 3.
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*> H is COMPLEX array, dimension (LDH,N)
*> The 2-by-2 or 3-by-3 matrix H in (*).
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
*> The leading dimension of H as declared in
*> the calling procedure. LDH >= N
*> \endverbatim
*>
*> \param[in] S1
*> \verbatim
*> S1 is COMPLEX
*> \endverbatim
*>
*> \param[in] S2
*> \verbatim
*> S2 is COMPLEX
*>
*> S1 and S2 are the shifts defining K in (*) above.
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is COMPLEX array, dimension (N)
*> A scalar multiple of the first column of the
*> matrix K in (*).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup laqr1
*
*> \par Contributors:
* ==================
*>
*> Karen Braman and Ralph Byers, Department of Mathematics,
*> University of Kansas, USA
*>
* =====================================================================
SUBROUTINE CLAQR1( N, H, LDH, S1, S2, V )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
COMPLEX S1, S2
INTEGER LDH, N
* ..
* .. Array Arguments ..
COMPLEX H( LDH, * ), V( * )
* ..
*
* ================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0e0, 0.0e0 ) )
REAL RZERO
PARAMETER ( RZERO = 0.0e0 )
* ..
* .. Local Scalars ..
COMPLEX CDUM, H21S, H31S
REAL S
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, REAL
* ..
* .. Statement Functions ..
REAL CABS1
* ..
* .. Statement Function definitions ..
CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.NE.2 .AND. N.NE.3 ) THEN
RETURN
END IF
*
IF( N.EQ.2 ) THEN
S = CABS1( H( 1, 1 )-S2 ) + CABS1( H( 2, 1 ) )
IF( S.EQ.RZERO ) THEN
V( 1 ) = ZERO
V( 2 ) = ZERO
ELSE
H21S = H( 2, 1 ) / S
V( 1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-S1 )*
$ ( ( H( 1, 1 )-S2 ) / S )
V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-S1-S2 )
END IF
ELSE
S = CABS1( H( 1, 1 )-S2 ) + CABS1( H( 2, 1 ) ) +
$ CABS1( H( 3, 1 ) )
IF( S.EQ.ZERO ) THEN
V( 1 ) = ZERO
V( 2 ) = ZERO
V( 3 ) = ZERO
ELSE
H21S = H( 2, 1 ) / S
H31S = H( 3, 1 ) / S
V( 1 ) = ( H( 1, 1 )-S1 )*( ( H( 1, 1 )-S2 ) / S ) +
$ H( 1, 2 )*H21S + H( 1, 3 )*H31S
V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-S1-S2 ) + H( 2, 3 )*H31S
V( 3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-S1-S2 ) + H21S*H( 3, 2 )
END IF
END IF
END
|