1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205
|
!> \brief \b DGEDMD computes the Dynamic Mode Decomposition (DMD) for a pair of data snapshot matrices.
!
! =========== DOCUMENTATION ===========
!
! Definition:
! ===========
!
! SUBROUTINE DGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
! M, N, X, LDX, Y, LDY, NRNK, TOL, &
! K, REIG, IMEIG, Z, LDZ, RES, &
! B, LDB, W, LDW, S, LDS, &
! WORK, LWORK, IWORK, LIWORK, INFO )
!.....
! USE, INTRINSIC :: iso_fortran_env, only: real64
! IMPLICIT NONE
! INTEGER, PARAMETER :: WP = real64
!.....
! Scalar arguments
! CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
! INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
! NRNK, LDZ, LDB, LDW, LDS, &
! LWORK, LIWORK
! INTEGER, INTENT(OUT) :: K, INFO
! REAL(KIND=WP), INTENT(IN) :: TOL
! Array arguments
! REAL(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
! REAL(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
! W(LDW,*), S(LDS,*)
! REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), &
! RES(*)
! REAL(KIND=WP), INTENT(OUT) :: WORK(*)
! INTEGER, INTENT(OUT) :: IWORK(*)
!
!............................................................
!> \par Purpose:
! =============
!> \verbatim
!> DGEDMD computes the Dynamic Mode Decomposition (DMD) for
!> a pair of data snapshot matrices. For the input matrices
!> X and Y such that Y = A*X with an unaccessible matrix
!> A, DGEDMD computes a certain number of Ritz pairs of A using
!> the standard Rayleigh-Ritz extraction from a subspace of
!> range(X) that is determined using the leading left singular
!> vectors of X. Optionally, DGEDMD returns the residuals
!> of the computed Ritz pairs, the information needed for
!> a refinement of the Ritz vectors, or the eigenvectors of
!> the Exact DMD.
!> For further details see the references listed
!> below. For more details of the implementation see [3].
!> \endverbatim
!............................................................
!> \par References:
! ================
!> \verbatim
!> [1] P. Schmid: Dynamic mode decomposition of numerical
!> and experimental data,
!> Journal of Fluid Mechanics 656, 5-28, 2010.
!> [2] Z. Drmac, I. Mezic, R. Mohr: Data driven modal
!> decompositions: analysis and enhancements,
!> SIAM J. on Sci. Comp. 40 (4), A2253-A2285, 2018.
!> [3] Z. Drmac: A LAPACK implementation of the Dynamic
!> Mode Decomposition I. Technical report. AIMDyn Inc.
!> and LAPACK Working Note 298.
!> [4] J. Tu, C. W. Rowley, D. M. Luchtenburg, S. L.
!> Brunton, N. Kutz: On Dynamic Mode Decomposition:
!> Theory and Applications, Journal of Computational
!> Dynamics 1(2), 391 -421, 2014.
!> \endverbatim
!......................................................................
!> \par Developed and supported by:
! ================================
!> \verbatim
!> Developed and coded by Zlatko Drmac, Faculty of Science,
!> University of Zagreb; drmac@math.hr
!> In cooperation with
!> AIMdyn Inc., Santa Barbara, CA.
!> and supported by
!> - DARPA SBIR project "Koopman Operator-Based Forecasting
!> for Nonstationary Processes from Near-Term, Limited
!> Observational Data" Contract No: W31P4Q-21-C-0007
!> - DARPA PAI project "Physics-Informed Machine Learning
!> Methodologies" Contract No: HR0011-18-9-0033
!> - DARPA MoDyL project "A Data-Driven, Operator-Theoretic
!> Framework for Space-Time Analysis of Process Dynamics"
!> Contract No: HR0011-16-C-0116
!> Any opinions, findings and conclusions or recommendations
!> expressed in this material are those of the author and
!> do not necessarily reflect the views of the DARPA SBIR
!> Program Office
!> \endverbatim
!......................................................................
!> \par Distribution Statement A:
! ==============================
!> \verbatim
!> Approved for Public Release, Distribution Unlimited.
!> Cleared by DARPA on September 29, 2022
!> \endverbatim
!......................................................................
! Arguments
! =========
!
!> \param[in] JOBS
!> \verbatim
!> JOBS (input) is CHARACTER*1
!> Determines whether the initial data snapshots are scaled
!> by a diagonal matrix.
!> 'S' :: The data snapshots matrices X and Y are multiplied
!> with a diagonal matrix D so that X*D has unit
!> nonzero columns (in the Euclidean 2-norm)
!> 'C' :: The snapshots are scaled as with the 'S' option.
!> If it is found that an i-th column of X is zero
!> vector and the corresponding i-th column of Y is
!> non-zero, then the i-th column of Y is set to
!> zero and a warning flag is raised.
!> 'Y' :: The data snapshots matrices X and Y are multiplied
!> by a diagonal matrix D so that Y*D has unit
!> nonzero columns (in the Euclidean 2-norm)
!> 'N' :: No data scaling.
!> \endverbatim
!.....
!> \param[in] JOBZ
!> \verbatim
!> JOBZ (input) CHARACTER*1
!> Determines whether the eigenvectors (Koopman modes) will
!> be computed.
!> 'V' :: The eigenvectors (Koopman modes) will be computed
!> and returned in the matrix Z.
!> See the description of Z.
!> 'F' :: The eigenvectors (Koopman modes) will be returned
!> in factored form as the product X(:,1:K)*W, where X
!> contains a POD basis (leading left singular vectors
!> of the data matrix X) and W contains the eigenvectors
!> of the corresponding Rayleigh quotient.
!> See the descriptions of K, X, W, Z.
!> 'N' :: The eigenvectors are not computed.
!> \endverbatim
!.....
!> \param[in] JOBR
!> \verbatim
!> JOBR (input) CHARACTER*1
!> Determines whether to compute the residuals.
!> 'R' :: The residuals for the computed eigenpairs will be
!> computed and stored in the array RES.
!> See the description of RES.
!> For this option to be legal, JOBZ must be 'V'.
!> 'N' :: The residuals are not computed.
!> \endverbatim
!.....
!> \param[in] JOBF
!> \verbatim
!> JOBF (input) CHARACTER*1
!> Specifies whether to store information needed for post-
!> processing (e.g. computing refined Ritz vectors)
!> 'R' :: The matrix needed for the refinement of the Ritz
!> vectors is computed and stored in the array B.
!> See the description of B.
!> 'E' :: The unscaled eigenvectors of the Exact DMD are
!> computed and returned in the array B. See the
!> description of B.
!> 'N' :: No eigenvector refinement data is computed.
!> \endverbatim
!.....
!> \param[in] WHTSVD
!> \verbatim
!> WHTSVD (input) INTEGER, WHSTVD in { 1, 2, 3, 4 }
!> Allows for a selection of the SVD algorithm from the
!> LAPACK library.
!> 1 :: DGESVD (the QR SVD algorithm)
!> 2 :: DGESDD (the Divide and Conquer algorithm; if enough
!> workspace available, this is the fastest option)
!> 3 :: DGESVDQ (the preconditioned QR SVD ; this and 4
!> are the most accurate options)
!> 4 :: DGEJSV (the preconditioned Jacobi SVD; this and 3
!> are the most accurate options)
!> For the four methods above, a significant difference in
!> the accuracy of small singular values is possible if
!> the snapshots vary in norm so that X is severely
!> ill-conditioned. If small (smaller than EPS*||X||)
!> singular values are of interest and JOBS=='N', then
!> the options (3, 4) give the most accurate results, where
!> the option 4 is slightly better and with stronger
!> theoretical background.
!> If JOBS=='S', i.e. the columns of X will be normalized,
!> then all methods give nearly equally accurate results.
!> \endverbatim
!.....
!> \param[in] M
!> \verbatim
!> M (input) INTEGER, M>= 0
!> The state space dimension (the row dimension of X, Y).
!> \endverbatim
!.....
!> \param[in] N
!> \verbatim
!> N (input) INTEGER, 0 <= N <= M
!> The number of data snapshot pairs
!> (the number of columns of X and Y).
!> \endverbatim
!.....
!> \param[in,out] X
!> \verbatim
!> X (input/output) REAL(KIND=WP) M-by-N array
!> > On entry, X contains the data snapshot matrix X. It is
!> assumed that the column norms of X are in the range of
!> the normalized floating point numbers.
!> < On exit, the leading K columns of X contain a POD basis,
!> i.e. the leading K left singular vectors of the input
!> data matrix X, U(:,1:K). All N columns of X contain all
!> left singular vectors of the input matrix X.
!> See the descriptions of K, Z and W.
!> \endverbatim
!.....
!> \param[in] LDX
!> \verbatim
!> LDX (input) INTEGER, LDX >= M
!> The leading dimension of the array X.
!> \endverbatim
!.....
!> \param[in,out] Y
!> \verbatim
!> Y (input/workspace/output) REAL(KIND=WP) M-by-N array
!> > On entry, Y contains the data snapshot matrix Y
!> < On exit,
!> If JOBR == 'R', the leading K columns of Y contain
!> the residual vectors for the computed Ritz pairs.
!> See the description of RES.
!> If JOBR == 'N', Y contains the original input data,
!> scaled according to the value of JOBS.
!> \endverbatim
!.....
!> \param[in] LDY
!> \verbatim
!> LDY (input) INTEGER , LDY >= M
!> The leading dimension of the array Y.
!> \endverbatim
!.....
!> \param[in] NRNK
!> \verbatim
!> NRNK (input) INTEGER
!> Determines the mode how to compute the numerical rank,
!> i.e. how to truncate small singular values of the input
!> matrix X. On input, if
!> NRNK = -1 :: i-th singular value sigma(i) is truncated
!> if sigma(i) <= TOL*sigma(1).
!> This option is recommended.
!> NRNK = -2 :: i-th singular value sigma(i) is truncated
!> if sigma(i) <= TOL*sigma(i-1)
!> This option is included for R&D purposes.
!> It requires highly accurate SVD, which
!> may not be feasible.
!>
!> The numerical rank can be enforced by using positive
!> value of NRNK as follows:
!> 0 < NRNK <= N :: at most NRNK largest singular values
!> will be used. If the number of the computed nonzero
!> singular values is less than NRNK, then only those
!> nonzero values will be used and the actually used
!> dimension is less than NRNK. The actual number of
!> the nonzero singular values is returned in the variable
!> K. See the descriptions of TOL and K.
!> \endverbatim
!.....
!> \param[in] TOL
!> \verbatim
!> TOL (input) REAL(KIND=WP), 0 <= TOL < 1
!> The tolerance for truncating small singular values.
!> See the description of NRNK.
!> \endverbatim
!.....
!> \param[out] K
!> \verbatim
!> K (output) INTEGER, 0 <= K <= N
!> The dimension of the POD basis for the data snapshot
!> matrix X and the number of the computed Ritz pairs.
!> The value of K is determined according to the rule set
!> by the parameters NRNK and TOL.
!> See the descriptions of NRNK and TOL.
!> \endverbatim
!.....
!> \param[out] REIG
!> \verbatim
!> REIG (output) REAL(KIND=WP) N-by-1 array
!> The leading K (K<=N) entries of REIG contain
!> the real parts of the computed eigenvalues
!> REIG(1:K) + sqrt(-1)*IMEIG(1:K).
!> See the descriptions of K, IMEIG, and Z.
!> \endverbatim
!.....
!> \param[out] IMEIG
!> \verbatim
!> IMEIG (output) REAL(KIND=WP) N-by-1 array
!> The leading K (K<=N) entries of IMEIG contain
!> the imaginary parts of the computed eigenvalues
!> REIG(1:K) + sqrt(-1)*IMEIG(1:K).
!> The eigenvalues are determined as follows:
!> If IMEIG(i) == 0, then the corresponding eigenvalue is
!> real, LAMBDA(i) = REIG(i).
!> If IMEIG(i)>0, then the corresponding complex
!> conjugate pair of eigenvalues reads
!> LAMBDA(i) = REIG(i) + sqrt(-1)*IMAG(i)
!> LAMBDA(i+1) = REIG(i) - sqrt(-1)*IMAG(i)
!> That is, complex conjugate pairs have consecutive
!> indices (i,i+1), with the positive imaginary part
!> listed first.
!> See the descriptions of K, REIG, and Z.
!> \endverbatim
!.....
!> \param[out] Z
!> \verbatim
!> Z (workspace/output) REAL(KIND=WP) M-by-N array
!> If JOBZ =='V' then
!> Z contains real Ritz vectors as follows:
!> If IMEIG(i)=0, then Z(:,i) is an eigenvector of
!> the i-th Ritz value; ||Z(:,i)||_2=1.
!> If IMEIG(i) > 0 (and IMEIG(i+1) < 0) then
!> [Z(:,i) Z(:,i+1)] span an invariant subspace and
!> the Ritz values extracted from this subspace are
!> REIG(i) + sqrt(-1)*IMEIG(i) and
!> REIG(i) - sqrt(-1)*IMEIG(i).
!> The corresponding eigenvectors are
!> Z(:,i) + sqrt(-1)*Z(:,i+1) and
!> Z(:,i) - sqrt(-1)*Z(:,i+1), respectively.
!> || Z(:,i:i+1)||_F = 1.
!> If JOBZ == 'F', then the above descriptions hold for
!> the columns of X(:,1:K)*W(1:K,1:K), where the columns
!> of W(1:k,1:K) are the computed eigenvectors of the
!> K-by-K Rayleigh quotient. The columns of W(1:K,1:K)
!> are similarly structured: If IMEIG(i) == 0 then
!> X(:,1:K)*W(:,i) is an eigenvector, and if IMEIG(i)>0
!> then X(:,1:K)*W(:,i)+sqrt(-1)*X(:,1:K)*W(:,i+1) and
!> X(:,1:K)*W(:,i)-sqrt(-1)*X(:,1:K)*W(:,i+1)
!> are the eigenvectors of LAMBDA(i), LAMBDA(i+1).
!> See the descriptions of REIG, IMEIG, X and W.
!> \endverbatim
!.....
!> \param[in] LDZ
!> \verbatim
!> LDZ (input) INTEGER , LDZ >= M
!> The leading dimension of the array Z.
!> \endverbatim
!.....
!> \param[out] RES
!> \verbatim
!> RES (output) REAL(KIND=WP) N-by-1 array
!> RES(1:K) contains the residuals for the K computed
!> Ritz pairs.
!> If LAMBDA(i) is real, then
!> RES(i) = || A * Z(:,i) - LAMBDA(i)*Z(:,i))||_2.
!> If [LAMBDA(i), LAMBDA(i+1)] is a complex conjugate pair
!> then
!> RES(i)=RES(i+1) = || A * Z(:,i:i+1) - Z(:,i:i+1) *B||_F
!> where B = [ real(LAMBDA(i)) imag(LAMBDA(i)) ]
!> [-imag(LAMBDA(i)) real(LAMBDA(i)) ].
!> It holds that
!> RES(i) = || A*ZC(:,i) - LAMBDA(i) *ZC(:,i) ||_2
!> RES(i+1) = || A*ZC(:,i+1) - LAMBDA(i+1)*ZC(:,i+1) ||_2
!> where ZC(:,i) = Z(:,i) + sqrt(-1)*Z(:,i+1)
!> ZC(:,i+1) = Z(:,i) - sqrt(-1)*Z(:,i+1)
!> See the description of REIG, IMEIG and Z.
!> \endverbatim
!.....
!> \param[out] B
!> \verbatim
!> B (output) REAL(KIND=WP) M-by-N array.
!> IF JOBF =='R', B(1:M,1:K) contains A*U(:,1:K), and can
!> be used for computing the refined vectors; see further
!> details in the provided references.
!> If JOBF == 'E', B(1:M,1;K) contains
!> A*U(:,1:K)*W(1:K,1:K), which are the vectors from the
!> Exact DMD, up to scaling by the inverse eigenvalues.
!> If JOBF =='N', then B is not referenced.
!> See the descriptions of X, W, K.
!> \endverbatim
!.....
!> \param[in] LDB
!> \verbatim
!> LDB (input) INTEGER, LDB >= M
!> The leading dimension of the array B.
!> \endverbatim
!.....
!> \param[out] W
!> \verbatim
!> W (workspace/output) REAL(KIND=WP) N-by-N array
!> On exit, W(1:K,1:K) contains the K computed
!> eigenvectors of the matrix Rayleigh quotient (real and
!> imaginary parts for each complex conjugate pair of the
!> eigenvalues). The Ritz vectors (returned in Z) are the
!> product of X (containing a POD basis for the input
!> matrix X) and W. See the descriptions of K, S, X and Z.
!> W is also used as a workspace to temporarily store the
!> right singular vectors of X.
!> \endverbatim
!.....
!> \param[in] LDW
!> \verbatim
!> LDW (input) INTEGER, LDW >= N
!> The leading dimension of the array W.
!> \endverbatim
!.....
!> \param[out] S
!> \verbatim
!> S (workspace/output) REAL(KIND=WP) N-by-N array
!> The array S(1:K,1:K) is used for the matrix Rayleigh
!> quotient. This content is overwritten during
!> the eigenvalue decomposition by DGEEV.
!> See the description of K.
!> \endverbatim
!.....
!> \param[in] LDS
!> \verbatim
!> LDS (input) INTEGER, LDS >= N
!> The leading dimension of the array S.
!> \endverbatim
!.....
!> \param[out] WORK
!> \verbatim
!> WORK (workspace/output) REAL(KIND=WP) LWORK-by-1 array
!> On exit, WORK(1:N) contains the singular values of
!> X (for JOBS=='N') or column scaled X (JOBS=='S', 'C').
!> If WHTSVD==4, then WORK(N+1) and WORK(N+2) contain
!> scaling factor WORK(N+2)/WORK(N+1) used to scale X
!> and Y to avoid overflow in the SVD of X.
!> This may be of interest if the scaling option is off
!> and as many as possible smallest eigenvalues are
!> desired to the highest feasible accuracy.
!> If the call to DGEDMD is only workspace query, then
!> WORK(1) contains the minimal workspace length and
!> WORK(2) is the optimal workspace length. Hence, the
!> leng of work is at least 2.
!> See the description of LWORK.
!> \endverbatim
!.....
!> \param[in] LWORK
!> \verbatim
!> LWORK (input) INTEGER
!> The minimal length of the workspace vector WORK.
!> LWORK is calculated as follows:
!> If WHTSVD == 1 ::
!> If JOBZ == 'V', then
!> LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N)).
!> If JOBZ == 'N' then
!> LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N)).
!> Here LWORK_SVD = MAX(1,3*N+M,5*N) is the minimal
!> workspace length of DGESVD.
!> If WHTSVD == 2 ::
!> If JOBZ == 'V', then
!> LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,4*N))
!> If JOBZ == 'N', then
!> LWORK >= MAX(2, N + LWORK_SVD, N+MAX(1,3*N))
!> Here LWORK_SVD = MAX(M, 5*N*N+4*N)+3*N*N is the
!> minimal workspace length of DGESDD.
!> If WHTSVD == 3 ::
!> If JOBZ == 'V', then
!> LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N))
!> If JOBZ == 'N', then
!> LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N))
!> Here LWORK_SVD = N+M+MAX(3*N+1,
!> MAX(1,3*N+M,5*N),MAX(1,N))
!> is the minimal workspace length of DGESVDQ.
!> If WHTSVD == 4 ::
!> If JOBZ == 'V', then
!> LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,4*N))
!> If JOBZ == 'N', then
!> LWORK >= MAX(2, N+LWORK_SVD,N+MAX(1,3*N))
!> Here LWORK_SVD = MAX(7,2*M+N,6*N+2*N*N) is the
!> minimal workspace length of DGEJSV.
!> The above expressions are not simplified in order to
!> make the usage of WORK more transparent, and for
!> easier checking. In any case, LWORK >= 2.
!> If on entry LWORK = -1, then a workspace query is
!> assumed and the procedure only computes the minimal
!> and the optimal workspace lengths for both WORK and
!> IWORK. See the descriptions of WORK and IWORK.
!> \endverbatim
!.....
!> \param[out] IWORK
!> \verbatim
!> IWORK (workspace/output) INTEGER LIWORK-by-1 array
!> Workspace that is required only if WHTSVD equals
!> 2 , 3 or 4. (See the description of WHTSVD).
!> If on entry LWORK =-1 or LIWORK=-1, then the
!> minimal length of IWORK is computed and returned in
!> IWORK(1). See the description of LIWORK.
!> \endverbatim
!.....
!> \param[in] LIWORK
!> \verbatim
!> LIWORK (input) INTEGER
!> The minimal length of the workspace vector IWORK.
!> If WHTSVD == 1, then only IWORK(1) is used; LIWORK >=1
!> If WHTSVD == 2, then LIWORK >= MAX(1,8*MIN(M,N))
!> If WHTSVD == 3, then LIWORK >= MAX(1,M+N-1)
!> If WHTSVD == 4, then LIWORK >= MAX(3,M+3*N)
!> If on entry LIWORK = -1, then a workspace query is
!> assumed and the procedure only computes the minimal
!> and the optimal workspace lengths for both WORK and
!> IWORK. See the descriptions of WORK and IWORK.
!> \endverbatim
!.....
!> \param[out] INFO
!> \verbatim
!> INFO (output) INTEGER
!> -i < 0 :: On entry, the i-th argument had an
!> illegal value
!> = 0 :: Successful return.
!> = 1 :: Void input. Quick exit (M=0 or N=0).
!> = 2 :: The SVD computation of X did not converge.
!> Suggestion: Check the input data and/or
!> repeat with different WHTSVD.
!> = 3 :: The computation of the eigenvalues did not
!> converge.
!> = 4 :: If data scaling was requested on input and
!> the procedure found inconsistency in the data
!> such that for some column index i,
!> X(:,i) = 0 but Y(:,i) /= 0, then Y(:,i) is set
!> to zero if JOBS=='C'. The computation proceeds
!> with original or modified data and warning
!> flag is set with INFO=4.
!> \endverbatim
!
! Authors:
! ========
!
!> \author Zlatko Drmac
!
!> \ingroup gedmd
!
!.............................................................
!.............................................................
SUBROUTINE DGEDMD( JOBS, JOBZ, JOBR, JOBF, WHTSVD, &
M, N, X, LDX, Y, LDY, NRNK, TOL, &
K, REIG, IMEIG, Z, LDZ, RES, &
B, LDB, W, LDW, S, LDS, &
WORK, LWORK, IWORK, LIWORK, INFO )
!
! -- LAPACK driver routine --
!
! -- LAPACK is a software package provided by University of --
! -- Tennessee, University of California Berkeley, University of --
! -- Colorado Denver and NAG Ltd.. --
!
!.....
USE, INTRINSIC :: iso_fortran_env, only: real64
IMPLICIT NONE
INTEGER, PARAMETER :: WP = real64
!
! Scalar arguments
! ~~~~~~~~~~~~~~~~
CHARACTER, INTENT(IN) :: JOBS, JOBZ, JOBR, JOBF
INTEGER, INTENT(IN) :: WHTSVD, M, N, LDX, LDY, &
NRNK, LDZ, LDB, LDW, LDS, &
LWORK, LIWORK
INTEGER, INTENT(OUT) :: K, INFO
REAL(KIND=WP), INTENT(IN) :: TOL
!
! Array arguments
! ~~~~~~~~~~~~~~~
REAL(KIND=WP), INTENT(INOUT) :: X(LDX,*), Y(LDY,*)
REAL(KIND=WP), INTENT(OUT) :: Z(LDZ,*), B(LDB,*), &
W(LDW,*), S(LDS,*)
REAL(KIND=WP), INTENT(OUT) :: REIG(*), IMEIG(*), &
RES(*)
REAL(KIND=WP), INTENT(OUT) :: WORK(*)
INTEGER, INTENT(OUT) :: IWORK(*)
!
! Parameters
! ~~~~~~~~~~
REAL(KIND=WP), PARAMETER :: ONE = 1.0_WP
REAL(KIND=WP), PARAMETER :: ZERO = 0.0_WP
!
! Local scalars
! ~~~~~~~~~~~~~
REAL(KIND=WP) :: OFL, ROOTSC, SCALE, SMALL, &
SSUM, XSCL1, XSCL2
INTEGER :: i, j, IMINWR, INFO1, INFO2, &
LWRKEV, LWRSDD, LWRSVD, &
LWRSVQ, MLWORK, MWRKEV, MWRSDD, &
MWRSVD, MWRSVJ, MWRSVQ, NUMRNK, &
OLWORK
LOGICAL :: BADXY, LQUERY, SCCOLX, SCCOLY, &
WNTEX, WNTREF, WNTRES, WNTVEC
CHARACTER :: JOBZL, T_OR_N
CHARACTER :: JSVOPT
!
! Local arrays
! ~~~~~~~~~~~~
REAL(KIND=WP) :: AB(2,2), RDUMMY(2), RDUMMY2(2)
!
! External functions (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~
REAL(KIND=WP) DLANGE, DLAMCH, DNRM2
EXTERNAL DLANGE, DLAMCH, DNRM2, IDAMAX
INTEGER IDAMAX
LOGICAL DISNAN, LSAME
EXTERNAL DISNAN, LSAME
!
! External subroutines (BLAS and LAPACK)
! ~~~~~~~~~~~~~~~~~~~~
EXTERNAL DAXPY, DGEMM, DSCAL
EXTERNAL DGEEV, DGEJSV, DGESDD, DGESVD, DGESVDQ, &
DLACPY, DLASCL, DLASSQ, XERBLA
!
! Intrinsic functions
! ~~~~~~~~~~~~~~~~~~~
INTRINSIC DBLE, INT, MAX, SQRT
!............................................................
!
! Test the input arguments
!
WNTRES = LSAME(JOBR,'R')
SCCOLX = LSAME(JOBS,'S') .OR. LSAME(JOBS,'C')
SCCOLY = LSAME(JOBS,'Y')
WNTVEC = LSAME(JOBZ,'V')
WNTREF = LSAME(JOBF,'R')
WNTEX = LSAME(JOBF,'E')
INFO = 0
LQUERY = ( ( LWORK == -1 ) .OR. ( LIWORK == -1 ) )
!
IF ( .NOT. (SCCOLX .OR. SCCOLY .OR. &
LSAME(JOBS,'N')) ) THEN
INFO = -1
ELSE IF ( .NOT. (WNTVEC .OR. LSAME(JOBZ,'N') &
.OR. LSAME(JOBZ,'F')) ) THEN
INFO = -2
ELSE IF ( .NOT. (WNTRES .OR. LSAME(JOBR,'N')) .OR. &
( WNTRES .AND. (.NOT.WNTVEC) ) ) THEN
INFO = -3
ELSE IF ( .NOT. (WNTREF .OR. WNTEX .OR. &
LSAME(JOBF,'N') ) ) THEN
INFO = -4
ELSE IF ( .NOT.((WHTSVD == 1) .OR. (WHTSVD == 2) .OR. &
(WHTSVD == 3) .OR. (WHTSVD == 4) )) THEN
INFO = -5
ELSE IF ( M < 0 ) THEN
INFO = -6
ELSE IF ( ( N < 0 ) .OR. ( N > M ) ) THEN
INFO = -7
ELSE IF ( LDX < M ) THEN
INFO = -9
ELSE IF ( LDY < M ) THEN
INFO = -11
ELSE IF ( .NOT. (( NRNK == -2).OR.(NRNK == -1).OR. &
((NRNK >= 1).AND.(NRNK <=N ))) ) THEN
INFO = -12
ELSE IF ( ( TOL < ZERO ) .OR. ( TOL >= ONE ) ) THEN
INFO = -13
ELSE IF ( LDZ < M ) THEN
INFO = -18
ELSE IF ( (WNTREF .OR. WNTEX ) .AND. ( LDB < M ) ) THEN
INFO = -21
ELSE IF ( LDW < N ) THEN
INFO = -23
ELSE IF ( LDS < N ) THEN
INFO = -25
END IF
!
IF ( INFO == 0 ) THEN
! Compute the minimal and the optimal workspace
! requirements. Simulate running the code and
! determine minimal and optimal sizes of the
! workspace at any moment of the run.
IF ( N == 0 ) THEN
! Quick return. All output except K is void.
! INFO=1 signals the void input.
! In case of a workspace query, the default
! minimal workspace lengths are returned.
IF ( LQUERY ) THEN
IWORK(1) = 1
WORK(1) = 2
WORK(2) = 2
ELSE
K = 0
END IF
INFO = 1
RETURN
END IF
MLWORK = MAX(2,N)
OLWORK = MAX(2,N)
IMINWR = 1
SELECT CASE ( WHTSVD )
CASE (1)
! The following is specified as the minimal
! length of WORK in the definition of DGESVD:
! MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
MLWORK = MAX(MLWORK,N + MWRSVD)
IF ( LQUERY ) THEN
CALL DGESVD( 'O', 'S', M, N, X, LDX, WORK, &
B, LDB, W, LDW, RDUMMY, -1, INFO1 )
LWRSVD = MAX( MWRSVD, INT( RDUMMY(1) ) )
OLWORK = MAX(OLWORK,N + LWRSVD)
END IF
CASE (2)
! The following is specified as the minimal
! length of WORK in the definition of DGESDD:
! MWRSDD = 3*MIN(M,N)*MIN(M,N) +
! MAX( MAX(M,N),5*MIN(M,N)*MIN(M,N)+4*MIN(M,N) )
! IMINWR = 8*MIN(M,N)
MWRSDD = 3*MIN(M,N)*MIN(M,N) + &
MAX( MAX(M,N),5*MIN(M,N)*MIN(M,N)+4*MIN(M,N) )
MLWORK = MAX(MLWORK,N + MWRSDD)
IMINWR = 8*MIN(M,N)
IF ( LQUERY ) THEN
CALL DGESDD( 'O', M, N, X, LDX, WORK, B, &
LDB, W, LDW, RDUMMY, -1, IWORK, INFO1 )
LWRSDD = MAX( MWRSDD, INT( RDUMMY(1) ) )
OLWORK = MAX(OLWORK,N + LWRSDD)
END IF
CASE (3)
!LWQP3 = 3*N+1
!LWORQ = MAX(N, 1)
!MWRSVD = MAX(1,3*MIN(M,N)+MAX(M,N),5*MIN(M,N))
!MWRSVQ = N + MAX( LWQP3, MWRSVD, LWORQ ) + MAX(M,2)
!MLWORK = N + MWRSVQ
!IMINWR = M+N-1
CALL DGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, WORK, Z, LDZ, W, LDW, &
NUMRNK, IWORK, LIWORK, RDUMMY, &
-1, RDUMMY2, -1, INFO1 )
IMINWR = IWORK(1)
MWRSVQ = INT(RDUMMY(2))
MLWORK = MAX(MLWORK,N+MWRSVQ+INT(RDUMMY2(1)))
IF ( LQUERY ) THEN
LWRSVQ = MAX( MWRSVQ, INT(RDUMMY(1)) )
OLWORK = MAX(OLWORK,N+LWRSVQ+INT(RDUMMY2(1)))
END IF
CASE (4)
JSVOPT = 'J'
!MWRSVJ = MAX( 7, 2*M+N, 6*N+2*N*N ) ! for JSVOPT='V'
MWRSVJ = MAX( 7, 2*M+N, 4*N+N*N, 2*N+N*N+6 )
MLWORK = MAX(MLWORK,N+MWRSVJ)
IMINWR = MAX( 3, M+3*N )
IF ( LQUERY ) THEN
OLWORK = MAX(OLWORK,N+MWRSVJ)
END IF
END SELECT
IF ( WNTVEC .OR. WNTEX .OR. LSAME(JOBZ,'F') ) THEN
JOBZL = 'V'
ELSE
JOBZL = 'N'
END IF
! Workspace calculation to the DGEEV call
IF ( LSAME(JOBZL,'V') ) THEN
MWRKEV = MAX( 1, 4*N )
ELSE
MWRKEV = MAX( 1, 3*N )
END IF
MLWORK = MAX(MLWORK,N+MWRKEV)
IF ( LQUERY ) THEN
CALL DGEEV( 'N', JOBZL, N, S, LDS, REIG, &
IMEIG, W, LDW, W, LDW, RDUMMY, -1, INFO1 )
LWRKEV = MAX( MWRKEV, INT(RDUMMY(1)) )
OLWORK = MAX( OLWORK, N+LWRKEV )
END IF
!
IF ( LIWORK < IMINWR .AND. (.NOT.LQUERY) ) INFO = -29
IF ( LWORK < MLWORK .AND. (.NOT.LQUERY) ) INFO = -27
END IF
!
IF( INFO /= 0 ) THEN
CALL XERBLA( 'DGEDMD', -INFO )
RETURN
ELSE IF ( LQUERY ) THEN
! Return minimal and optimal workspace sizes
IWORK(1) = IMINWR
WORK(1) = MLWORK
WORK(2) = OLWORK
RETURN
END IF
!............................................................
!
OFL = DLAMCH('O')
SMALL = DLAMCH('S')
BADXY = .FALSE.
!
! <1> Optional scaling of the snapshots (columns of X, Y)
! ==========================================================
IF ( SCCOLX ) THEN
! The columns of X will be normalized.
! To prevent overflows, the column norms of X are
! carefully computed using DLASSQ.
K = 0
DO i = 1, N
!WORK(i) = DNRM2( M, X(1,i), 1 )
SSUM = ONE
SCALE = ZERO
CALL DLASSQ( M, X(1,i), 1, SCALE, SSUM )
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
K = 0
INFO = -8
CALL XERBLA('DGEDMD',-INFO)
END IF
IF ( (SCALE /= ZERO) .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of X(:,i) overflows. First, X(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||X(:,i)||_2.
! Next, the norm of X(:,i) is stored without
! overflow as WORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of X(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL DLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, X(1,i), M, INFO2 )
WORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
ELSE
! X(:,i) will be scaled to unit 2-norm
WORK(i) = SCALE * ROOTSC
CALL DLASCL( 'G',0, 0, WORK(i), ONE, M, 1, &
X(1,i), M, INFO2 ) ! LAPACK CALL
! X(1:M,i) = (ONE/WORK(i)) * X(1:M,i) ! INTRINSIC
END IF
ELSE
WORK(i) = ZERO
K = K + 1
END IF
END DO
IF ( K == N ) THEN
! All columns of X are zero. Return error code -8.
! (the 8th input variable had an illegal value)
K = 0
INFO = -8
CALL XERBLA('DGEDMD',-INFO)
RETURN
END IF
DO i = 1, N
! Now, apply the same scaling to the columns of Y.
IF ( WORK(i) > ZERO ) THEN
CALL DSCAL( M, ONE/WORK(i), Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = (ONE/WORK(i)) * Y(1:M,i) ! INTRINSIC
ELSE IF ( WORK(i) < ZERO ) THEN
CALL DLASCL( 'G', 0, 0, -WORK(i), &
ONE/DBLE(M), M, 1, Y(1,i), M, INFO2 ) ! LAPACK CALL
ELSE IF ( Y(IDAMAX(M, Y(1,i),1),i ) &
/= ZERO ) THEN
! X(:,i) is zero vector. For consistency,
! Y(:,i) should also be zero. If Y(:,i) is not
! zero, then the data might be inconsistent or
! corrupted. If JOBS == 'C', Y(:,i) is set to
! zero and a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
IF ( LSAME(JOBS,'C')) &
CALL DSCAL( M, ZERO, Y(1,i), 1 ) ! BLAS CALL
END IF
END DO
END IF
!
IF ( SCCOLY ) THEN
! The columns of Y will be normalized.
! To prevent overflows, the column norms of Y are
! carefully computed using DLASSQ.
DO i = 1, N
!WORK(i) = DNRM2( M, Y(1,i), 1 )
SSUM = ONE
SCALE = ZERO
CALL DLASSQ( M, Y(1,i), 1, SCALE, SSUM )
IF ( DISNAN(SCALE) .OR. DISNAN(SSUM) ) THEN
K = 0
INFO = -10
CALL XERBLA('DGEDMD',-INFO)
END IF
IF ( SCALE /= ZERO .AND. (SSUM /= ZERO) ) THEN
ROOTSC = SQRT(SSUM)
IF ( SCALE .GE. (OFL / ROOTSC) ) THEN
! Norm of Y(:,i) overflows. First, Y(:,i)
! is scaled by
! ( ONE / ROOTSC ) / SCALE = 1/||Y(:,i)||_2.
! Next, the norm of Y(:,i) is stored without
! overflow as WORK(i) = - SCALE * (ROOTSC/M),
! the minus sign indicating the 1/M factor.
! Scaling is performed without overflow, and
! underflow may occur in the smallest entries
! of Y(:,i). The relative backward and forward
! errors are small in the ell_2 norm.
CALL DLASCL( 'G', 0, 0, SCALE, ONE/ROOTSC, &
M, 1, Y(1,i), M, INFO2 )
WORK(i) = - SCALE * ( ROOTSC / DBLE(M) )
ELSE
! X(:,i) will be scaled to unit 2-norm
WORK(i) = SCALE * ROOTSC
CALL DLASCL( 'G',0, 0, WORK(i), ONE, M, 1, &
Y(1,i), M, INFO2 ) ! LAPACK CALL
! Y(1:M,i) = (ONE/WORK(i)) * Y(1:M,i) ! INTRINSIC
END IF
ELSE
WORK(i) = ZERO
END IF
END DO
DO i = 1, N
! Now, apply the same scaling to the columns of X.
IF ( WORK(i) > ZERO ) THEN
CALL DSCAL( M, ONE/WORK(i), X(1,i), 1 ) ! BLAS CALL
! X(1:M,i) = (ONE/WORK(i)) * X(1:M,i) ! INTRINSIC
ELSE IF ( WORK(i) < ZERO ) THEN
CALL DLASCL( 'G', 0, 0, -WORK(i), &
ONE/DBLE(M), M, 1, X(1,i), M, INFO2 ) ! LAPACK CALL
ELSE IF ( X(IDAMAX(M, X(1,i),1),i ) &
/= ZERO ) THEN
! Y(:,i) is zero vector. If X(:,i) is not
! zero, then a warning flag is raised.
! The computation continues but the
! situation will be reported in the output.
BADXY = .TRUE.
END IF
END DO
END IF
!
! <2> SVD of the data snapshot matrix X.
! =====================================
! The left singular vectors are stored in the array X.
! The right singular vectors are in the array W.
! The array W will later on contain the eigenvectors
! of a Rayleigh quotient.
NUMRNK = N
SELECT CASE ( WHTSVD )
CASE (1)
CALL DGESVD( 'O', 'S', M, N, X, LDX, WORK, B, &
LDB, W, LDW, WORK(N+1), LWORK-N, INFO1 ) ! LAPACK CALL
T_OR_N = 'T'
CASE (2)
CALL DGESDD( 'O', M, N, X, LDX, WORK, B, LDB, W, &
LDW, WORK(N+1), LWORK-N, IWORK, INFO1 ) ! LAPACK CALL
T_OR_N = 'T'
CASE (3)
CALL DGESVDQ( 'H', 'P', 'N', 'R', 'R', M, N, &
X, LDX, WORK, Z, LDZ, W, LDW, &
NUMRNK, IWORK, LIWORK, WORK(N+MAX(2,M)+1),&
LWORK-N-MAX(2,M), WORK(N+1), MAX(2,M), INFO1) ! LAPACK CALL
CALL DLACPY( 'A', M, NUMRNK, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'T'
CASE (4)
CALL DGEJSV( 'F', 'U', JSVOPT, 'N', 'N', 'P', M, &
N, X, LDX, WORK, Z, LDZ, W, LDW, &
WORK(N+1), LWORK-N, IWORK, INFO1 ) ! LAPACK CALL
CALL DLACPY( 'A', M, N, Z, LDZ, X, LDX ) ! LAPACK CALL
T_OR_N = 'N'
XSCL1 = WORK(N+1)
XSCL2 = WORK(N+2)
IF ( XSCL1 /= XSCL2 ) THEN
! This is an exceptional situation. If the
! data matrices are not scaled and the
! largest singular value of X overflows.
! In that case DGEJSV can return the SVD
! in scaled form. The scaling factor can be used
! to rescale the data (X and Y).
CALL DLASCL( 'G', 0, 0, XSCL1, XSCL2, M, N, Y, LDY, INFO2 )
END IF
END SELECT
!
IF ( INFO1 > 0 ) THEN
! The SVD selected subroutine did not converge.
! Return with an error code.
INFO = 2
RETURN
END IF
!
IF ( WORK(1) == ZERO ) THEN
! The largest computed singular value of (scaled)
! X is zero. Return error code -8
! (the 8th input variable had an illegal value).
K = 0
INFO = -8
CALL XERBLA('DGEDMD',-INFO)
RETURN
END IF
!
!<3> Determine the numerical rank of the data
! snapshots matrix X. This depends on the
! parameters NRNK and TOL.
SELECT CASE ( NRNK )
CASE ( -1 )
K = 1
DO i = 2, NUMRNK
IF ( ( WORK(i) <= WORK(1)*TOL ) .OR. &
( WORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE ( -2 )
K = 1
DO i = 1, NUMRNK-1
IF ( ( WORK(i+1) <= WORK(i)*TOL ) .OR. &
( WORK(i) <= SMALL ) ) EXIT
K = K + 1
END DO
CASE DEFAULT
K = 1
DO i = 2, NRNK
IF ( WORK(i) <= SMALL ) EXIT
K = K + 1
END DO
END SELECT
! Now, U = X(1:M,1:K) is the SVD/POD basis for the
! snapshot data in the input matrix X.
!<4> Compute the Rayleigh quotient S = U^T * A * U.
! Depending on the requested outputs, the computation
! is organized to compute additional auxiliary
! matrices (for the residuals and refinements).
!
! In all formulas below, we need V_k*Sigma_k^(-1)
! where either V_k is in W(1:N,1:K), or V_k^T is in
! W(1:K,1:N). Here Sigma_k=diag(WORK(1:K)).
IF ( LSAME(T_OR_N, 'N') ) THEN
DO i = 1, K
CALL DSCAL( N, ONE/WORK(i), W(1,i), 1 ) ! BLAS CALL
! W(1:N,i) = (ONE/WORK(i)) * W(1:N,i) ! INTRINSIC
END DO
ELSE
! This non-unit stride access is due to the fact
! that DGESVD, DGESVDQ and DGESDD return the
! transposed matrix of the right singular vectors.
!DO i = 1, K
! CALL DSCAL( N, ONE/WORK(i), W(i,1), LDW ) ! BLAS CALL
! ! W(i,1:N) = (ONE/WORK(i)) * W(i,1:N) ! INTRINSIC
!END DO
DO i = 1, K
WORK(N+i) = ONE/WORK(i)
END DO
DO j = 1, N
DO i = 1, K
W(i,j) = (WORK(N+i))*W(i,j)
END DO
END DO
END IF
!
IF ( WNTREF ) THEN
!
! Need A*U(:,1:K)=Y*V_k*inv(diag(WORK(1:K)))
! for computing the refined Ritz vectors
! (optionally, outside DGEDMD).
CALL DGEMM( 'N', T_OR_N, M, K, N, ONE, Y, LDY, W, &
LDW, ZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
! Z(1:M,1:K)=MATMUL(Y(1:M,1:N),W(1:N,1:K)) ! INTRINSIC, for T_OR_N=='N'
!
! At this point Z contains
! A * U(:,1:K) = Y * V_k * Sigma_k^(-1), and
! this is needed for computing the residuals.
! This matrix is returned in the array B and
! it can be used to compute refined Ritz vectors.
CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB ) ! BLAS CALL
! B(1:M,1:K) = Z(1:M,1:K) ! INTRINSIC
CALL DGEMM( 'T', 'N', K, K, M, ONE, X, LDX, Z, &
LDZ, ZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(TANSPOSE(X(1:M,1:K)),Z(1:M,1:K)) ! INTRINSIC
! At this point S = U^T * A * U is the Rayleigh quotient.
ELSE
! A * U(:,1:K) is not explicitly needed and the
! computation is organized differently. The Rayleigh
! quotient is computed more efficiently.
CALL DGEMM( 'T', 'N', K, N, M, ONE, X, LDX, Y, LDY, &
ZERO, Z, LDZ ) ! BLAS CALL
! Z(1:K,1:N) = MATMUL( TRANSPOSE(X(1:M,1:K)), Y(1:M,1:N) ) ! INTRINSIC
! In the two DGEMM calls here, can use K for LDZ.
CALL DGEMM( 'N', T_OR_N, K, K, N, ONE, Z, LDZ, W, &
LDW, ZERO, S, LDS ) ! BLAS CALL
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),TRANSPOSE(W(1:K,1:N))) ! INTRINSIC, for T_OR_N=='T'
! S(1:K,1:K) = MATMUL(Z(1:K,1:N),(W(1:N,1:K))) ! INTRINSIC, for T_OR_N=='N'
! At this point S = U^T * A * U is the Rayleigh quotient.
! If the residuals are requested, save scaled V_k into Z.
! Recall that V_k or V_k^T is stored in W.
IF ( WNTRES .OR. WNTEX ) THEN
IF ( LSAME(T_OR_N, 'N') ) THEN
CALL DLACPY( 'A', N, K, W, LDW, Z, LDZ )
ELSE
CALL DLACPY( 'A', K, N, W, LDW, Z, LDZ )
END IF
END IF
END IF
!
!<5> Compute the Ritz values and (if requested) the
! right eigenvectors of the Rayleigh quotient.
!
CALL DGEEV( 'N', JOBZL, K, S, LDS, REIG, IMEIG, W, &
LDW, W, LDW, WORK(N+1), LWORK-N, INFO1 ) ! LAPACK CALL
!
! W(1:K,1:K) contains the eigenvectors of the Rayleigh
! quotient. Even in the case of complex spectrum, all
! computation is done in real arithmetic. REIG and
! IMEIG are the real and the imaginary parts of the
! eigenvalues, so that the spectrum is given as
! REIG(:) + sqrt(-1)*IMEIG(:). Complex conjugate pairs
! are listed at consecutive positions. For such a
! complex conjugate pair of the eigenvalues, the
! corresponding eigenvectors are also a complex
! conjugate pair with the real and imaginary parts
! stored column-wise in W at the corresponding
! consecutive column indices. See the description of Z.
! Also, see the description of DGEEV.
IF ( INFO1 > 0 ) THEN
! DGEEV failed to compute the eigenvalues and
! eigenvectors of the Rayleigh quotient.
INFO = 3
RETURN
END IF
!
! <6> Compute the eigenvectors (if requested) and,
! the residuals (if requested).
!
IF ( WNTVEC .OR. WNTEX ) THEN
IF ( WNTRES ) THEN
IF ( WNTREF ) THEN
! Here, if the refinement is requested, we have
! A*U(:,1:K) already computed and stored in Z.
! For the residuals, need Y = A * U(:,1;K) * W.
CALL DGEMM( 'N', 'N', M, K, K, ONE, Z, LDZ, W, &
LDW, ZERO, Y, LDY ) ! BLAS CALL
! Y(1:M,1:K) = Z(1:M,1:K) * W(1:K,1:K) ! INTRINSIC
! This frees Z; Y contains A * U(:,1:K) * W.
ELSE
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) is stored in Z
CALL DGEMM( T_OR_N, 'N', N, K, K, ONE, Z, LDZ, &
W, LDW, ZERO, S, LDS)
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
LDS, ZERO, Z, LDZ)
! Save a copy of Z into Y and free Z for holding
! the Ritz vectors.
CALL DLACPY( 'A', M, K, Z, LDZ, Y, LDY )
IF ( WNTEX ) CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
ELSE IF ( WNTEX ) THEN
! Compute S = V_k * Sigma_k^(-1) * W, where
! V_k * Sigma_k^(-1) is stored in Z
CALL DGEMM( T_OR_N, 'N', N, K, K, ONE, Z, LDZ, &
W, LDW, ZERO, S, LDS )
! Then, compute Z = Y * S =
! = Y * V_k * Sigma_k^(-1) * W(1:K,1:K) =
! = A * U(:,1:K) * W(1:K,1:K)
CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
LDS, ZERO, B, LDB )
! The above call replaces the following two calls
! that were used in the developing-testing phase.
! CALL DGEMM( 'N', 'N', M, K, N, ONE, Y, LDY, S, &
! LDS, ZERO, Z, LDZ)
! Save a copy of Z into B and free Z for holding
! the Ritz vectors.
! CALL DLACPY( 'A', M, K, Z, LDZ, B, LDB )
END IF
!
! Compute the real form of the Ritz vectors
IF ( WNTVEC ) CALL DGEMM( 'N', 'N', M, K, K, ONE, X, LDX, W, LDW, &
ZERO, Z, LDZ ) ! BLAS CALL
! Z(1:M,1:K) = MATMUL(X(1:M,1:K), W(1:K,1:K)) ! INTRINSIC
!
IF ( WNTRES ) THEN
i = 1
DO WHILE ( i <= K )
IF ( IMEIG(i) == ZERO ) THEN
! have a real eigenvalue with real eigenvector
CALL DAXPY( M, -REIG(i), Z(1,i), 1, Y(1,i), 1 ) ! BLAS CALL
! Y(1:M,i) = Y(1:M,i) - REIG(i) * Z(1:M,i) ! INTRINSIC
RES(i) = DNRM2( M, Y(1,i), 1) ! BLAS CALL
i = i + 1
ELSE
! Have a complex conjugate pair
! REIG(i) +- sqrt(-1)*IMEIG(i).
! Since all computation is done in real
! arithmetic, the formula for the residual
! is recast for real representation of the
! complex conjugate eigenpair. See the
! description of RES.
AB(1,1) = REIG(i)
AB(2,1) = -IMEIG(i)
AB(1,2) = IMEIG(i)
AB(2,2) = REIG(i)
CALL DGEMM( 'N', 'N', M, 2, 2, -ONE, Z(1,i), &
LDZ, AB, 2, ONE, Y(1,i), LDY ) ! BLAS CALL
! Y(1:M,i:i+1) = Y(1:M,i:i+1) - Z(1:M,i:i+1) * AB ! INTRINSIC
RES(i) = DLANGE( 'F', M, 2, Y(1,i), LDY, &
WORK(N+1) ) ! LAPACK CALL
RES(i+1) = RES(i)
i = i + 2
END IF
END DO
END IF
END IF
!
IF ( WHTSVD == 4 ) THEN
WORK(N+1) = XSCL1
WORK(N+2) = XSCL2
END IF
!
! Successful exit.
IF ( .NOT. BADXY ) THEN
INFO = 0
ELSE
! A warning on possible data inconsistency.
! This should be a rare event.
INFO = 4
END IF
!............................................................
RETURN
! ......
END SUBROUTINE DGEDMD
|