1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
|
*> \brief \b DLASQ4 computes an approximation to the smallest eigenvalue using values of d from the previous transform. Used by sbdsqr.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASQ4 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasq4.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasq4.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasq4.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
* DN1, DN2, TAU, TTYPE, G )
*
* .. Scalar Arguments ..
* INTEGER I0, N0, N0IN, PP, TTYPE
* DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
* ..
* .. Array Arguments ..
* DOUBLE PRECISION Z( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASQ4 computes an approximation TAU to the smallest eigenvalue
*> using values of d from the previous transform.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] I0
*> \verbatim
*> I0 is INTEGER
*> First index.
*> \endverbatim
*>
*> \param[in] N0
*> \verbatim
*> N0 is INTEGER
*> Last index.
*> \endverbatim
*>
*> \param[in] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension ( 4*N0 )
*> Z holds the qd array.
*> \endverbatim
*>
*> \param[in] PP
*> \verbatim
*> PP is INTEGER
*> PP=0 for ping, PP=1 for pong.
*> \endverbatim
*>
*> \param[in] N0IN
*> \verbatim
*> N0IN is INTEGER
*> The value of N0 at start of EIGTEST.
*> \endverbatim
*>
*> \param[in] DMIN
*> \verbatim
*> DMIN is DOUBLE PRECISION
*> Minimum value of d.
*> \endverbatim
*>
*> \param[in] DMIN1
*> \verbatim
*> DMIN1 is DOUBLE PRECISION
*> Minimum value of d, excluding D( N0 ).
*> \endverbatim
*>
*> \param[in] DMIN2
*> \verbatim
*> DMIN2 is DOUBLE PRECISION
*> Minimum value of d, excluding D( N0 ) and D( N0-1 ).
*> \endverbatim
*>
*> \param[in] DN
*> \verbatim
*> DN is DOUBLE PRECISION
*> d(N)
*> \endverbatim
*>
*> \param[in] DN1
*> \verbatim
*> DN1 is DOUBLE PRECISION
*> d(N-1)
*> \endverbatim
*>
*> \param[in] DN2
*> \verbatim
*> DN2 is DOUBLE PRECISION
*> d(N-2)
*> \endverbatim
*>
*> \param[out] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION
*> This is the shift.
*> \endverbatim
*>
*> \param[out] TTYPE
*> \verbatim
*> TTYPE is INTEGER
*> Shift type.
*> \endverbatim
*>
*> \param[in,out] G
*> \verbatim
*> G is DOUBLE PRECISION
*> G is passed as an argument in order to save its value between
*> calls to DLASQ4.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup lasq4
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> CNST1 = 9/16
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DLASQ4( I0, N0, Z, PP, N0IN, DMIN, DMIN1, DMIN2, DN,
$ DN1, DN2, TAU, TTYPE, G )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER I0, N0, N0IN, PP, TTYPE
DOUBLE PRECISION DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, TAU
* ..
* .. Array Arguments ..
DOUBLE PRECISION Z( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION CNST1, CNST2, CNST3
PARAMETER ( CNST1 = 0.5630D0, CNST2 = 1.010D0,
$ CNST3 = 1.050D0 )
DOUBLE PRECISION QURTR, THIRD, HALF, ZERO, ONE, TWO, HUNDRD
PARAMETER ( QURTR = 0.250D0, THIRD = 0.3330D0,
$ HALF = 0.50D0, ZERO = 0.0D0, ONE = 1.0D0,
$ TWO = 2.0D0, HUNDRD = 100.0D0 )
* ..
* .. Local Scalars ..
INTEGER I4, NN, NP
DOUBLE PRECISION A2, B1, B2, GAM, GAP1, GAP2, S
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, SQRT
* ..
* .. Executable Statements ..
*
* A negative DMIN forces the shift to take that absolute value
* TTYPE records the type of shift.
*
IF( DMIN.LE.ZERO ) THEN
TAU = -DMIN
TTYPE = -1
RETURN
END IF
*
NN = 4*N0 + PP
IF( N0IN.EQ.N0 ) THEN
*
* No eigenvalues deflated.
*
IF( DMIN.EQ.DN .OR. DMIN.EQ.DN1 ) THEN
*
B1 = SQRT( Z( NN-3 ) )*SQRT( Z( NN-5 ) )
B2 = SQRT( Z( NN-7 ) )*SQRT( Z( NN-9 ) )
A2 = Z( NN-7 ) + Z( NN-5 )
*
* Cases 2 and 3.
*
IF( DMIN.EQ.DN .AND. DMIN1.EQ.DN1 ) THEN
GAP2 = DMIN2 - A2 - DMIN2*QURTR
IF( GAP2.GT.ZERO .AND. GAP2.GT.B2 ) THEN
GAP1 = A2 - DN - ( B2 / GAP2 )*B2
ELSE
GAP1 = A2 - DN - ( B1+B2 )
END IF
IF( GAP1.GT.ZERO .AND. GAP1.GT.B1 ) THEN
S = MAX( DN-( B1 / GAP1 )*B1, HALF*DMIN )
TTYPE = -2
ELSE
S = ZERO
IF( DN.GT.B1 )
$ S = DN - B1
IF( A2.GT.( B1+B2 ) )
$ S = MIN( S, A2-( B1+B2 ) )
S = MAX( S, THIRD*DMIN )
TTYPE = -3
END IF
ELSE
*
* Case 4.
*
TTYPE = -4
S = QURTR*DMIN
IF( DMIN.EQ.DN ) THEN
GAM = DN
A2 = ZERO
IF( Z( NN-5 ) .GT. Z( NN-7 ) )
$ RETURN
B2 = Z( NN-5 ) / Z( NN-7 )
NP = NN - 9
ELSE
NP = NN - 2*PP
GAM = DN1
IF( Z( NP-4 ) .GT. Z( NP-2 ) )
$ RETURN
A2 = Z( NP-4 ) / Z( NP-2 )
IF( Z( NN-9 ) .GT. Z( NN-11 ) )
$ RETURN
B2 = Z( NN-9 ) / Z( NN-11 )
NP = NN - 13
END IF
*
* Approximate contribution to norm squared from I < NN-1.
*
A2 = A2 + B2
DO 10 I4 = NP, 4*I0 - 1 + PP, -4
IF( B2.EQ.ZERO )
$ GO TO 20
B1 = B2
IF( Z( I4 ) .GT. Z( I4-2 ) )
$ RETURN
B2 = B2*( Z( I4 ) / Z( I4-2 ) )
A2 = A2 + B2
IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 )
$ GO TO 20
10 CONTINUE
20 CONTINUE
A2 = CNST3*A2
*
* Rayleigh quotient residual bound.
*
IF( A2.LT.CNST1 )
$ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
END IF
ELSE IF( DMIN.EQ.DN2 ) THEN
*
* Case 5.
*
TTYPE = -5
S = QURTR*DMIN
*
* Compute contribution to norm squared from I > NN-2.
*
NP = NN - 2*PP
B1 = Z( NP-2 )
B2 = Z( NP-6 )
GAM = DN2
IF( Z( NP-8 ).GT.B2 .OR. Z( NP-4 ).GT.B1 )
$ RETURN
A2 = ( Z( NP-8 ) / B2 )*( ONE+Z( NP-4 ) / B1 )
*
* Approximate contribution to norm squared from I < NN-2.
*
IF( N0-I0.GT.2 ) THEN
B2 = Z( NN-13 ) / Z( NN-15 )
A2 = A2 + B2
DO 30 I4 = NN - 17, 4*I0 - 1 + PP, -4
IF( B2.EQ.ZERO )
$ GO TO 40
B1 = B2
IF( Z( I4 ) .GT. Z( I4-2 ) )
$ RETURN
B2 = B2*( Z( I4 ) / Z( I4-2 ) )
A2 = A2 + B2
IF( HUNDRD*MAX( B2, B1 ).LT.A2 .OR. CNST1.LT.A2 )
$ GO TO 40
30 CONTINUE
40 CONTINUE
A2 = CNST3*A2
END IF
*
IF( A2.LT.CNST1 )
$ S = GAM*( ONE-SQRT( A2 ) ) / ( ONE+A2 )
ELSE
*
* Case 6, no information to guide us.
*
IF( TTYPE.EQ.-6 ) THEN
G = G + THIRD*( ONE-G )
ELSE IF( TTYPE.EQ.-18 ) THEN
G = QURTR*THIRD
ELSE
G = QURTR
END IF
S = G*DMIN
TTYPE = -6
END IF
*
ELSE IF( N0IN.EQ.( N0+1 ) ) THEN
*
* One eigenvalue just deflated. Use DMIN1, DN1 for DMIN and DN.
*
IF( DMIN1.EQ.DN1 .AND. DMIN2.EQ.DN2 ) THEN
*
* Cases 7 and 8.
*
TTYPE = -7
S = THIRD*DMIN1
IF( Z( NN-5 ).GT.Z( NN-7 ) )
$ RETURN
B1 = Z( NN-5 ) / Z( NN-7 )
B2 = B1
IF( B2.EQ.ZERO )
$ GO TO 60
DO 50 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
A2 = B1
IF( Z( I4 ).GT.Z( I4-2 ) )
$ RETURN
B1 = B1*( Z( I4 ) / Z( I4-2 ) )
B2 = B2 + B1
IF( HUNDRD*MAX( B1, A2 ).LT.B2 )
$ GO TO 60
50 CONTINUE
60 CONTINUE
B2 = SQRT( CNST3*B2 )
A2 = DMIN1 / ( ONE+B2**2 )
GAP2 = HALF*DMIN2 - A2
IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
ELSE
S = MAX( S, A2*( ONE-CNST2*B2 ) )
TTYPE = -8
END IF
ELSE
*
* Case 9.
*
S = QURTR*DMIN1
IF( DMIN1.EQ.DN1 )
$ S = HALF*DMIN1
TTYPE = -9
END IF
*
ELSE IF( N0IN.EQ.( N0+2 ) ) THEN
*
* Two eigenvalues deflated. Use DMIN2, DN2 for DMIN and DN.
*
* Cases 10 and 11.
*
IF( DMIN2.EQ.DN2 .AND. TWO*Z( NN-5 ).LT.Z( NN-7 ) ) THEN
TTYPE = -10
S = THIRD*DMIN2
IF( Z( NN-5 ).GT.Z( NN-7 ) )
$ RETURN
B1 = Z( NN-5 ) / Z( NN-7 )
B2 = B1
IF( B2.EQ.ZERO )
$ GO TO 80
DO 70 I4 = 4*N0 - 9 + PP, 4*I0 - 1 + PP, -4
IF( Z( I4 ).GT.Z( I4-2 ) )
$ RETURN
B1 = B1*( Z( I4 ) / Z( I4-2 ) )
B2 = B2 + B1
IF( HUNDRD*B1.LT.B2 )
$ GO TO 80
70 CONTINUE
80 CONTINUE
B2 = SQRT( CNST3*B2 )
A2 = DMIN2 / ( ONE+B2**2 )
GAP2 = Z( NN-7 ) + Z( NN-9 ) -
$ SQRT( Z( NN-11 ) )*SQRT( Z( NN-9 ) ) - A2
IF( GAP2.GT.ZERO .AND. GAP2.GT.B2*A2 ) THEN
S = MAX( S, A2*( ONE-CNST2*A2*( B2 / GAP2 )*B2 ) )
ELSE
S = MAX( S, A2*( ONE-CNST2*B2 ) )
END IF
ELSE
S = QURTR*DMIN2
TTYPE = -11
END IF
ELSE IF( N0IN.GT.( N0+2 ) ) THEN
*
* Case 12, more than two eigenvalues deflated. No information.
*
S = ZERO
TTYPE = -12
END IF
*
TAU = S
RETURN
*
* End of DLASQ4
*
END
|