1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
|
*> \brief \b DLASY2 solves the Sylvester matrix equation where the matrices are of order 1 or 2.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLASY2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlasy2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlasy2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlasy2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
* LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
*
* .. Scalar Arguments ..
* LOGICAL LTRANL, LTRANR
* INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
* DOUBLE PRECISION SCALE, XNORM
* ..
* .. Array Arguments ..
* DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
* $ X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLASY2 solves for the N1 by N2 matrix X, 1 <= N1,N2 <= 2, in
*>
*> op(TL)*X + ISGN*X*op(TR) = SCALE*B,
*>
*> where TL is N1 by N1, TR is N2 by N2, B is N1 by N2, and ISGN = 1 or
*> -1. op(T) = T or T**T, where T**T denotes the transpose of T.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] LTRANL
*> \verbatim
*> LTRANL is LOGICAL
*> On entry, LTRANL specifies the op(TL):
*> = .FALSE., op(TL) = TL,
*> = .TRUE., op(TL) = TL**T.
*> \endverbatim
*>
*> \param[in] LTRANR
*> \verbatim
*> LTRANR is LOGICAL
*> On entry, LTRANR specifies the op(TR):
*> = .FALSE., op(TR) = TR,
*> = .TRUE., op(TR) = TR**T.
*> \endverbatim
*>
*> \param[in] ISGN
*> \verbatim
*> ISGN is INTEGER
*> On entry, ISGN specifies the sign of the equation
*> as described before. ISGN may only be 1 or -1.
*> \endverbatim
*>
*> \param[in] N1
*> \verbatim
*> N1 is INTEGER
*> On entry, N1 specifies the order of matrix TL.
*> N1 may only be 0, 1 or 2.
*> \endverbatim
*>
*> \param[in] N2
*> \verbatim
*> N2 is INTEGER
*> On entry, N2 specifies the order of matrix TR.
*> N2 may only be 0, 1 or 2.
*> \endverbatim
*>
*> \param[in] TL
*> \verbatim
*> TL is DOUBLE PRECISION array, dimension (LDTL,2)
*> On entry, TL contains an N1 by N1 matrix.
*> \endverbatim
*>
*> \param[in] LDTL
*> \verbatim
*> LDTL is INTEGER
*> The leading dimension of the matrix TL. LDTL >= max(1,N1).
*> \endverbatim
*>
*> \param[in] TR
*> \verbatim
*> TR is DOUBLE PRECISION array, dimension (LDTR,2)
*> On entry, TR contains an N2 by N2 matrix.
*> \endverbatim
*>
*> \param[in] LDTR
*> \verbatim
*> LDTR is INTEGER
*> The leading dimension of the matrix TR. LDTR >= max(1,N2).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,2)
*> On entry, the N1 by N2 matrix B contains the right-hand
*> side of the equation.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the matrix B. LDB >= max(1,N1).
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION
*> On exit, SCALE contains the scale factor. SCALE is chosen
*> less than or equal to 1 to prevent the solution overflowing.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,2)
*> On exit, X contains the N1 by N2 solution.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the matrix X. LDX >= max(1,N1).
*> \endverbatim
*>
*> \param[out] XNORM
*> \verbatim
*> XNORM is DOUBLE PRECISION
*> On exit, XNORM is the infinity-norm of the solution.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> On exit, INFO is set to
*> 0: successful exit.
*> 1: TL and TR have too close eigenvalues, so TL or
*> TR is perturbed to get a nonsingular equation.
*> NOTE: In the interests of speed, this routine does not
*> check the inputs for errors.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup lasy2
*
* =====================================================================
SUBROUTINE DLASY2( LTRANL, LTRANR, ISGN, N1, N2, TL, LDTL, TR,
$ LDTR, B, LDB, SCALE, X, LDX, XNORM, INFO )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
LOGICAL LTRANL, LTRANR
INTEGER INFO, ISGN, LDB, LDTL, LDTR, LDX, N1, N2
DOUBLE PRECISION SCALE, XNORM
* ..
* .. Array Arguments ..
DOUBLE PRECISION B( LDB, * ), TL( LDTL, * ), TR( LDTR, * ),
$ X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
DOUBLE PRECISION TWO, HALF, EIGHT
PARAMETER ( TWO = 2.0D+0, HALF = 0.5D+0, EIGHT = 8.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL BSWAP, XSWAP
INTEGER I, IP, IPIV, IPSV, J, JP, JPSV, K
DOUBLE PRECISION BET, EPS, GAM, L21, SGN, SMIN, SMLNUM, TAU1,
$ TEMP, U11, U12, U22, XMAX
* ..
* .. Local Arrays ..
LOGICAL BSWPIV( 4 ), XSWPIV( 4 )
INTEGER JPIV( 4 ), LOCL21( 4 ), LOCU12( 4 ),
$ LOCU22( 4 )
DOUBLE PRECISION BTMP( 4 ), T16( 4, 4 ), TMP( 4 ), X2( 2 )
* ..
* .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL IDAMAX, DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL DCOPY, DSWAP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Data statements ..
DATA LOCU12 / 3, 4, 1, 2 / , LOCL21 / 2, 1, 4, 3 / ,
$ LOCU22 / 4, 3, 2, 1 /
DATA XSWPIV / .FALSE., .FALSE., .TRUE., .TRUE. /
DATA BSWPIV / .FALSE., .TRUE., .FALSE., .TRUE. /
* ..
* .. Executable Statements ..
*
* Do not check the input parameters for errors
*
INFO = 0
*
* Quick return if possible
*
IF( N1.EQ.0 .OR. N2.EQ.0 )
$ RETURN
*
* Set constants to control overflow
*
EPS = DLAMCH( 'P' )
SMLNUM = DLAMCH( 'S' ) / EPS
SGN = ISGN
*
K = N1 + N1 + N2 - 2
GO TO ( 10, 20, 30, 50 )K
*
* 1 by 1: TL11*X + SGN*X*TR11 = B11
*
10 CONTINUE
TAU1 = TL( 1, 1 ) + SGN*TR( 1, 1 )
BET = ABS( TAU1 )
IF( BET.LE.SMLNUM ) THEN
TAU1 = SMLNUM
BET = SMLNUM
INFO = 1
END IF
*
SCALE = ONE
GAM = ABS( B( 1, 1 ) )
IF( SMLNUM*GAM.GT.BET )
$ SCALE = ONE / GAM
*
X( 1, 1 ) = ( B( 1, 1 )*SCALE ) / TAU1
XNORM = ABS( X( 1, 1 ) )
RETURN
*
* 1 by 2:
* TL11*[X11 X12] + ISGN*[X11 X12]*op[TR11 TR12] = [B11 B12]
* [TR21 TR22]
*
20 CONTINUE
*
SMIN = MAX( EPS*MAX( ABS( TL( 1, 1 ) ), ABS( TR( 1, 1 ) ),
$ ABS( TR( 1, 2 ) ), ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) ),
$ SMLNUM )
TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
TMP( 4 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
IF( LTRANR ) THEN
TMP( 2 ) = SGN*TR( 2, 1 )
TMP( 3 ) = SGN*TR( 1, 2 )
ELSE
TMP( 2 ) = SGN*TR( 1, 2 )
TMP( 3 ) = SGN*TR( 2, 1 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 1, 2 )
GO TO 40
*
* 2 by 1:
* op[TL11 TL12]*[X11] + ISGN* [X11]*TR11 = [B11]
* [TL21 TL22] [X21] [X21] [B21]
*
30 CONTINUE
SMIN = MAX( EPS*MAX( ABS( TR( 1, 1 ) ), ABS( TL( 1, 1 ) ),
$ ABS( TL( 1, 2 ) ), ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) ),
$ SMLNUM )
TMP( 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
TMP( 4 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
IF( LTRANL ) THEN
TMP( 2 ) = TL( 1, 2 )
TMP( 3 ) = TL( 2, 1 )
ELSE
TMP( 2 ) = TL( 2, 1 )
TMP( 3 ) = TL( 1, 2 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 2, 1 )
40 CONTINUE
*
* Solve 2 by 2 system using complete pivoting.
* Set pivots less than SMIN to SMIN.
*
IPIV = IDAMAX( 4, TMP, 1 )
U11 = TMP( IPIV )
IF( ABS( U11 ).LE.SMIN ) THEN
INFO = 1
U11 = SMIN
END IF
U12 = TMP( LOCU12( IPIV ) )
L21 = TMP( LOCL21( IPIV ) ) / U11
U22 = TMP( LOCU22( IPIV ) ) - U12*L21
XSWAP = XSWPIV( IPIV )
BSWAP = BSWPIV( IPIV )
IF( ABS( U22 ).LE.SMIN ) THEN
INFO = 1
U22 = SMIN
END IF
IF( BSWAP ) THEN
TEMP = BTMP( 2 )
BTMP( 2 ) = BTMP( 1 ) - L21*TEMP
BTMP( 1 ) = TEMP
ELSE
BTMP( 2 ) = BTMP( 2 ) - L21*BTMP( 1 )
END IF
SCALE = ONE
IF( ( TWO*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( U22 ) .OR.
$ ( TWO*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( U11 ) ) THEN
SCALE = HALF / MAX( ABS( BTMP( 1 ) ), ABS( BTMP( 2 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
END IF
X2( 2 ) = BTMP( 2 ) / U22
X2( 1 ) = BTMP( 1 ) / U11 - ( U12 / U11 )*X2( 2 )
IF( XSWAP ) THEN
TEMP = X2( 2 )
X2( 2 ) = X2( 1 )
X2( 1 ) = TEMP
END IF
X( 1, 1 ) = X2( 1 )
IF( N1.EQ.1 ) THEN
X( 1, 2 ) = X2( 2 )
XNORM = ABS( X( 1, 1 ) ) + ABS( X( 1, 2 ) )
ELSE
X( 2, 1 ) = X2( 2 )
XNORM = MAX( ABS( X( 1, 1 ) ), ABS( X( 2, 1 ) ) )
END IF
RETURN
*
* 2 by 2:
* op[TL11 TL12]*[X11 X12] +ISGN* [X11 X12]*op[TR11 TR12] = [B11 B12]
* [TL21 TL22] [X21 X22] [X21 X22] [TR21 TR22] [B21 B22]
*
* Solve equivalent 4 by 4 system using complete pivoting.
* Set pivots less than SMIN to SMIN.
*
50 CONTINUE
SMIN = MAX( ABS( TR( 1, 1 ) ), ABS( TR( 1, 2 ) ),
$ ABS( TR( 2, 1 ) ), ABS( TR( 2, 2 ) ) )
SMIN = MAX( SMIN, ABS( TL( 1, 1 ) ), ABS( TL( 1, 2 ) ),
$ ABS( TL( 2, 1 ) ), ABS( TL( 2, 2 ) ) )
SMIN = MAX( EPS*SMIN, SMLNUM )
BTMP( 1 ) = ZERO
CALL DCOPY( 16, BTMP, 0, T16, 1 )
T16( 1, 1 ) = TL( 1, 1 ) + SGN*TR( 1, 1 )
T16( 2, 2 ) = TL( 2, 2 ) + SGN*TR( 1, 1 )
T16( 3, 3 ) = TL( 1, 1 ) + SGN*TR( 2, 2 )
T16( 4, 4 ) = TL( 2, 2 ) + SGN*TR( 2, 2 )
IF( LTRANL ) THEN
T16( 1, 2 ) = TL( 2, 1 )
T16( 2, 1 ) = TL( 1, 2 )
T16( 3, 4 ) = TL( 2, 1 )
T16( 4, 3 ) = TL( 1, 2 )
ELSE
T16( 1, 2 ) = TL( 1, 2 )
T16( 2, 1 ) = TL( 2, 1 )
T16( 3, 4 ) = TL( 1, 2 )
T16( 4, 3 ) = TL( 2, 1 )
END IF
IF( LTRANR ) THEN
T16( 1, 3 ) = SGN*TR( 1, 2 )
T16( 2, 4 ) = SGN*TR( 1, 2 )
T16( 3, 1 ) = SGN*TR( 2, 1 )
T16( 4, 2 ) = SGN*TR( 2, 1 )
ELSE
T16( 1, 3 ) = SGN*TR( 2, 1 )
T16( 2, 4 ) = SGN*TR( 2, 1 )
T16( 3, 1 ) = SGN*TR( 1, 2 )
T16( 4, 2 ) = SGN*TR( 1, 2 )
END IF
BTMP( 1 ) = B( 1, 1 )
BTMP( 2 ) = B( 2, 1 )
BTMP( 3 ) = B( 1, 2 )
BTMP( 4 ) = B( 2, 2 )
*
* Perform elimination
*
DO 100 I = 1, 3
XMAX = ZERO
DO 70 IP = I, 4
DO 60 JP = I, 4
IF( ABS( T16( IP, JP ) ).GE.XMAX ) THEN
XMAX = ABS( T16( IP, JP ) )
IPSV = IP
JPSV = JP
END IF
60 CONTINUE
70 CONTINUE
IF( IPSV.NE.I ) THEN
CALL DSWAP( 4, T16( IPSV, 1 ), 4, T16( I, 1 ), 4 )
TEMP = BTMP( I )
BTMP( I ) = BTMP( IPSV )
BTMP( IPSV ) = TEMP
END IF
IF( JPSV.NE.I )
$ CALL DSWAP( 4, T16( 1, JPSV ), 1, T16( 1, I ), 1 )
JPIV( I ) = JPSV
IF( ABS( T16( I, I ) ).LT.SMIN ) THEN
INFO = 1
T16( I, I ) = SMIN
END IF
DO 90 J = I + 1, 4
T16( J, I ) = T16( J, I ) / T16( I, I )
BTMP( J ) = BTMP( J ) - T16( J, I )*BTMP( I )
DO 80 K = I + 1, 4
T16( J, K ) = T16( J, K ) - T16( J, I )*T16( I, K )
80 CONTINUE
90 CONTINUE
100 CONTINUE
IF( ABS( T16( 4, 4 ) ).LT.SMIN ) THEN
INFO = 1
T16( 4, 4 ) = SMIN
END IF
SCALE = ONE
IF( ( EIGHT*SMLNUM )*ABS( BTMP( 1 ) ).GT.ABS( T16( 1, 1 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 2 ) ).GT.ABS( T16( 2, 2 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 3 ) ).GT.ABS( T16( 3, 3 ) ) .OR.
$ ( EIGHT*SMLNUM )*ABS( BTMP( 4 ) ).GT.ABS( T16( 4, 4 ) ) ) THEN
SCALE = ( ONE / EIGHT ) / MAX( ABS( BTMP( 1 ) ),
$ ABS( BTMP( 2 ) ), ABS( BTMP( 3 ) ), ABS( BTMP( 4 ) ) )
BTMP( 1 ) = BTMP( 1 )*SCALE
BTMP( 2 ) = BTMP( 2 )*SCALE
BTMP( 3 ) = BTMP( 3 )*SCALE
BTMP( 4 ) = BTMP( 4 )*SCALE
END IF
DO 120 I = 1, 4
K = 5 - I
TEMP = ONE / T16( K, K )
TMP( K ) = BTMP( K )*TEMP
DO 110 J = K + 1, 4
TMP( K ) = TMP( K ) - ( TEMP*T16( K, J ) )*TMP( J )
110 CONTINUE
120 CONTINUE
DO 130 I = 1, 3
IF( JPIV( 4-I ).NE.4-I ) THEN
TEMP = TMP( 4-I )
TMP( 4-I ) = TMP( JPIV( 4-I ) )
TMP( JPIV( 4-I ) ) = TEMP
END IF
130 CONTINUE
X( 1, 1 ) = TMP( 1 )
X( 2, 1 ) = TMP( 2 )
X( 1, 2 ) = TMP( 3 )
X( 2, 2 ) = TMP( 4 )
XNORM = MAX( ABS( TMP( 1 ) )+ABS( TMP( 3 ) ),
$ ABS( TMP( 2 ) )+ABS( TMP( 4 ) ) )
RETURN
*
* End of DLASY2
*
END
|