1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
|
*> \brief \b DLATRS3 solves a triangular system of equations with the scale factors set to prevent overflow.
*
* Definition:
* ===========
*
* SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA,
* X, LDX, SCALE, CNORM, WORK, LWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, NORMIN, TRANS, UPLO
* INTEGER INFO, LDA, LWORK, LDX, N, NRHS
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), CNORM( * ), SCALE( * ),
* WORK( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLATRS3 solves one of the triangular systems
*>
*> A * X = B * diag(scale) or A**T * X = B * diag(scale)
*>
*> with scaling to prevent overflow. Here A is an upper or lower
*> triangular matrix, A**T denotes the transpose of A. X and B are
*> n by nrhs matrices and scale is an nrhs element vector of scaling
*> factors. A scaling factor scale(j) is usually less than or equal
*> to 1, chosen such that X(:,j) is less than the overflow threshold.
*> If the matrix A is singular (A(j,j) = 0 for some j), then
*> a non-trivial solution to A*X = 0 is returned. If the system is
*> so badly scaled that the solution cannot be represented as
*> (1/scale(k))*X(:,k), then x(:,k) = 0 and scale(k) is returned.
*>
*> This is a BLAS-3 version of LATRS for solving several right
*> hand sides simultaneously.
*>
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the matrix A is upper or lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the operation applied to A.
*> = 'N': Solve A * x = s*b (No transpose)
*> = 'T': Solve A**T* x = s*b (Transpose)
*> = 'C': Solve A**T* x = s*b (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> Specifies whether or not the matrix A is unit triangular.
*> = 'N': Non-unit triangular
*> = 'U': Unit triangular
*> \endverbatim
*>
*> \param[in] NORMIN
*> \verbatim
*> NORMIN is CHARACTER*1
*> Specifies whether CNORM has been set or not.
*> = 'Y': CNORM contains the column norms on entry
*> = 'N': CNORM is not set on entry. On exit, the norms will
*> be computed and stored in CNORM.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of X. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The triangular matrix A. If UPLO = 'U', the leading n by n
*> upper triangular part of the array A contains the upper
*> triangular matrix, and the strictly lower triangular part of
*> A is not referenced. If UPLO = 'L', the leading n by n lower
*> triangular part of the array A contains the lower triangular
*> matrix, and the strictly upper triangular part of A is not
*> referenced. If DIAG = 'U', the diagonal elements of A are
*> also not referenced and are assumed to be 1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max (1,N).
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
*> On entry, the right hand side B of the triangular system.
*> On exit, X is overwritten by the solution matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max (1,N).
*> \endverbatim
*>
*> \param[out] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION array, dimension (NRHS)
*> The scaling factor s(k) is for the triangular system
*> A * x(:,k) = s(k)*b(:,k) or A**T* x(:,k) = s(k)*b(:,k).
*> If SCALE = 0, the matrix A is singular or badly scaled.
*> If A(j,j) = 0 is encountered, a non-trivial vector x(:,k)
*> that is an exact or approximate solution to A*x(:,k) = 0
*> is returned. If the system so badly scaled that solution
*> cannot be presented as x(:,k) * 1/s(k), then x(:,k) = 0
*> is returned.
*> \endverbatim
*>
*> \param[in,out] CNORM
*> \verbatim
*> CNORM is DOUBLE PRECISION array, dimension (N)
*>
*> If NORMIN = 'Y', CNORM is an input argument and CNORM(j)
*> contains the norm of the off-diagonal part of the j-th column
*> of A. If TRANS = 'N', CNORM(j) must be greater than or equal
*> to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j)
*> must be greater than or equal to the 1-norm.
*>
*> If NORMIN = 'N', CNORM is an output argument and CNORM(j)
*> returns the 1-norm of the offdiagonal part of the j-th column
*> of A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)).
*> On exit, if INFO = 0, WORK(1) returns the optimal size of
*> WORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*>
*> If MIN(N,NRHS) = 0, LWORK >= 1, else
*> LWORK >= MAX(1, 2*NBA * MAX(NBA, MIN(NRHS, 32)), where
*> NBA = (N + NB - 1)/NB and NB is the optimal block size.
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal dimensions of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -k, the k-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup latrs3
*> \par Further Details:
* =====================
* \verbatim
* The algorithm follows the structure of a block triangular solve.
* The diagonal block is solved with a call to the robust the triangular
* solver LATRS for every right-hand side RHS = 1, ..., NRHS
* op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS ),
* where op( A ) = A or op( A ) = A**T.
* The linear block updates operate on block columns of X,
* B( I, K ) - op(A( I, J )) * X( J, K )
* and use GEMM. To avoid overflow in the linear block update, the worst case
* growth is estimated. For every RHS, a scale factor s <= 1.0 is computed
* such that
* || s * B( I, RHS )||_oo
* + || op(A( I, J )) ||_oo * || s * X( J, RHS ) ||_oo <= Overflow threshold
*
* Once all columns of a block column have been rescaled (BLAS-1), the linear
* update is executed with GEMM without overflow.
*
* To limit rescaling, local scale factors track the scaling of column segments.
* There is one local scale factor s( I, RHS ) per block row I = 1, ..., NBA
* per right-hand side column RHS = 1, ..., NRHS. The global scale factor
* SCALE( RHS ) is chosen as the smallest local scale factor s( I, RHS )
* I = 1, ..., NBA.
* A triangular solve op(A( J, J )) * x( J, RHS ) = SCALOC * b( J, RHS )
* updates the local scale factor s( J, RHS ) := s( J, RHS ) * SCALOC. The
* linear update of potentially inconsistently scaled vector segments
* s( I, RHS ) * b( I, RHS ) - op(A( I, J )) * ( s( J, RHS )* x( J, RHS ) )
* computes a consistent scaling SCAMIN = MIN( s(I, RHS ), s(J, RHS) ) and,
* if necessary, rescales the blocks prior to calling GEMM.
*
* \endverbatim
* =====================================================================
* References:
* C. C. Kjelgaard Mikkelsen, A. B. Schwarz and L. Karlsson (2019).
* Parallel robust solution of triangular linear systems. Concurrency
* and Computation: Practice and Experience, 31(19), e5064.
*
* Contributor:
* Angelika Schwarz, Umea University, Sweden.
*
* =====================================================================
SUBROUTINE DLATRS3( UPLO, TRANS, DIAG, NORMIN, N, NRHS, A, LDA,
$ X, LDX, SCALE, CNORM, WORK, LWORK, INFO )
IMPLICIT NONE
*
* .. Scalar Arguments ..
CHARACTER DIAG, TRANS, NORMIN, UPLO
INTEGER INFO, LDA, LWORK, LDX, N, NRHS
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), CNORM( * ), X( LDX, * ),
$ SCALE( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
INTEGER NBMAX, NBMIN, NBRHS, NRHSMIN
PARAMETER ( NRHSMIN = 2, NBRHS = 32 )
PARAMETER ( NBMIN = 8, NBMAX = 64 )
* ..
* .. Local Arrays ..
DOUBLE PRECISION W( NBMAX ), XNRM( NBRHS )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, NOTRAN, NOUNIT, UPPER
INTEGER AWRK, I, IFIRST, IINC, ILAST, II, I1, I2, J,
$ JFIRST, JINC, JLAST, J1, J2, K, KK, K1, K2,
$ LANRM, LDS, LSCALE, NB, NBA, NBX, RHS, LWMIN
DOUBLE PRECISION ANRM, BIGNUM, BNRM, RSCAL, SCAL, SCALOC,
$ SCAMIN, SMLNUM, TMAX
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANGE, DLARMM
EXTERNAL DLAMCH, DLANGE, DLARMM, ILAENV,
$ LSAME
* ..
* .. External Subroutines ..
EXTERNAL DLATRS, DSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN
* ..
* .. Executable Statements ..
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOTRAN = LSAME( TRANS, 'N' )
NOUNIT = LSAME( DIAG, 'N' )
LQUERY = ( LWORK.EQ.-1 )
*
* Partition A and X into blocks
*
NB = MAX( 8, ILAENV( 1, 'DLATRS', '', N, N, -1, -1 ) )
NB = MIN( NBMAX, NB )
NBA = MAX( 1, (N + NB - 1) / NB )
NBX = MAX( 1, (NRHS + NBRHS - 1) / NBRHS )
*
* Compute the workspace
*
* The workspace comprises two parts.
* The first part stores the local scale factors. Each simultaneously
* computed right-hand side requires one local scale factor per block
* row. WORK( I+KK*LDS ) is the scale factor of the vector
* segment associated with the I-th block row and the KK-th vector
* in the block column.
*
LSCALE = NBA * MAX( NBA, MIN( NRHS, NBRHS ) )
LDS = NBA
*
* The second part stores upper bounds of the triangular A. There are
* a total of NBA x NBA blocks, of which only the upper triangular
* part or the lower triangular part is referenced. The upper bound of
* the block A( I, J ) is stored as WORK( AWRK + I + J * NBA ).
*
LANRM = NBA * NBA
AWRK = LSCALE
*
IF( MIN( N, NRHS ).EQ.0 ) THEN
LWMIN = 1
ELSE
LWMIN = LSCALE + LANRM
END IF
WORK( 1 ) = LWMIN
*
* Test the input parameters
*
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
$ LSAME( TRANS, 'C' ) ) THEN
INFO = -2
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -3
ELSE IF( .NOT.LSAME( NORMIN, 'Y' ) .AND. .NOT.
$ LSAME( NORMIN, 'N' ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -5
ELSE IF( NRHS.LT.0 ) THEN
INFO = -6
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -8
ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
INFO = -10
ELSE IF( .NOT.LQUERY .AND. LWORK.LT.LWMIN ) THEN
INFO = -14
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLATRS3', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Initialize scaling factors
*
DO KK = 1, NRHS
SCALE( KK ) = ONE
END DO
*
* Quick return if possible
*
IF( MIN( N, NRHS ).EQ.0 )
$ RETURN
*
* Determine machine dependent constant to control overflow.
*
BIGNUM = DLAMCH( 'Overflow' )
SMLNUM = DLAMCH( 'Safe Minimum' )
*
* Use unblocked code for small problems
*
IF( NRHS.LT.NRHSMIN ) THEN
CALL DLATRS( UPLO, TRANS, DIAG, NORMIN, N, A, LDA, X( 1, 1),
$ SCALE( 1 ), CNORM, INFO )
DO K = 2, NRHS
CALL DLATRS( UPLO, TRANS, DIAG, 'Y', N, A, LDA, X( 1,
$ K ),
$ SCALE( K ), CNORM, INFO )
END DO
RETURN
END IF
*
* Compute norms of blocks of A excluding diagonal blocks and find
* the block with the largest norm TMAX.
*
TMAX = ZERO
DO J = 1, NBA
J1 = (J-1)*NB + 1
J2 = MIN( J*NB, N ) + 1
IF ( UPPER ) THEN
IFIRST = 1
ILAST = J - 1
ELSE
IFIRST = J + 1
ILAST = NBA
END IF
DO I = IFIRST, ILAST
I1 = (I-1)*NB + 1
I2 = MIN( I*NB, N ) + 1
*
* Compute upper bound of A( I1:I2-1, J1:J2-1 ).
*
IF( NOTRAN ) THEN
ANRM = DLANGE( 'I', I2-I1, J2-J1, A( I1, J1 ), LDA,
$ W )
WORK( AWRK + I+(J-1)*NBA ) = ANRM
ELSE
ANRM = DLANGE( '1', I2-I1, J2-J1, A( I1, J1 ), LDA,
$ W )
WORK( AWRK + J+(I-1)*NBA ) = ANRM
END IF
TMAX = MAX( TMAX, ANRM )
END DO
END DO
*
IF( .NOT. TMAX.LE.DLAMCH('Overflow') ) THEN
*
* Some matrix entries have huge absolute value. At least one upper
* bound norm( A(I1:I2-1, J1:J2-1), 'I') is not a valid floating-point
* number, either due to overflow in LANGE or due to Inf in A.
* Fall back to LATRS. Set normin = 'N' for every right-hand side to
* force computation of TSCAL in LATRS to avoid the likely overflow
* in the computation of the column norms CNORM.
*
DO K = 1, NRHS
CALL DLATRS( UPLO, TRANS, DIAG, 'N', N, A, LDA, X( 1,
$ K ),
$ SCALE( K ), CNORM, INFO )
END DO
RETURN
END IF
*
* Every right-hand side requires workspace to store NBA local scale
* factors. To save workspace, X is computed successively in block columns
* of width NBRHS, requiring a total of NBA x NBRHS space. If sufficient
* workspace is available, larger values of NBRHS or NBRHS = NRHS are viable.
DO K = 1, NBX
* Loop over block columns (index = K) of X and, for column-wise scalings,
* over individual columns (index = KK).
* K1: column index of the first column in X( J, K )
* K2: column index of the first column in X( J, K+1 )
* so the K2 - K1 is the column count of the block X( J, K )
K1 = (K-1)*NBRHS + 1
K2 = MIN( K*NBRHS, NRHS ) + 1
*
* Initialize local scaling factors of current block column X( J, K )
*
DO KK = 1, K2-K1
DO I = 1, NBA
WORK( I+KK*LDS ) = ONE
END DO
END DO
*
IF( NOTRAN ) THEN
*
* Solve A * X(:, K1:K2-1) = B * diag(scale(K1:K2-1))
*
IF( UPPER ) THEN
JFIRST = NBA
JLAST = 1
JINC = -1
ELSE
JFIRST = 1
JLAST = NBA
JINC = 1
END IF
ELSE
*
* Solve A**T * X(:, K1:K2-1) = B * diag(scale(K1:K2-1))
*
IF( UPPER ) THEN
JFIRST = 1
JLAST = NBA
JINC = 1
ELSE
JFIRST = NBA
JLAST = 1
JINC = -1
END IF
END IF
*
DO J = JFIRST, JLAST, JINC
* J1: row index of the first row in A( J, J )
* J2: row index of the first row in A( J+1, J+1 )
* so that J2 - J1 is the row count of the block A( J, J )
J1 = (J-1)*NB + 1
J2 = MIN( J*NB, N ) + 1
*
* Solve op(A( J, J )) * X( J, RHS ) = SCALOC * B( J, RHS )
* for all right-hand sides in the current block column,
* one RHS at a time.
*
DO KK = 1, K2-K1
RHS = K1 + KK - 1
IF( KK.EQ.1 ) THEN
CALL DLATRS( UPLO, TRANS, DIAG, 'N', J2-J1,
$ A( J1, J1 ), LDA, X( J1, RHS ),
$ SCALOC, CNORM, INFO )
ELSE
CALL DLATRS( UPLO, TRANS, DIAG, 'Y', J2-J1,
$ A( J1, J1 ), LDA, X( J1, RHS ),
$ SCALOC, CNORM, INFO )
END IF
* Find largest absolute value entry in the vector segment
* X( J1:J2-1, RHS ) as an upper bound for the worst case
* growth in the linear updates.
XNRM( KK ) = DLANGE( 'I', J2-J1, 1, X( J1, RHS ),
$ LDX, W )
*
IF( SCALOC .EQ. ZERO ) THEN
* LATRS found that A is singular through A(j,j) = 0.
* Reset the computation x(1:n) = 0, x(j) = 1, SCALE = 0
* and compute A*x = 0 (or A**T*x = 0). Note that
* X(J1:J2-1, KK) is set by LATRS.
SCALE( RHS ) = ZERO
DO II = 1, J1-1
X( II, KK ) = ZERO
END DO
DO II = J2, N
X( II, KK ) = ZERO
END DO
* Discard the local scale factors.
DO II = 1, NBA
WORK( II+KK*LDS ) = ONE
END DO
SCALOC = ONE
ELSE IF( SCALOC * WORK( J+KK*LDS ) .EQ. ZERO ) THEN
* LATRS computed a valid scale factor, but combined with
* the current scaling the solution does not have a
* scale factor > 0.
*
* Set WORK( J+KK*LDS ) to smallest valid scale
* factor and increase SCALOC accordingly.
SCAL = WORK( J+KK*LDS ) / SMLNUM
SCALOC = SCALOC * SCAL
WORK( J+KK*LDS ) = SMLNUM
* If LATRS overestimated the growth, x may be
* rescaled to preserve a valid combined scale
* factor WORK( J, KK ) > 0.
RSCAL = ONE / SCALOC
IF( XNRM( KK ) * RSCAL .LE. BIGNUM ) THEN
XNRM( KK ) = XNRM( KK ) * RSCAL
CALL DSCAL( J2-J1, RSCAL, X( J1, RHS ), 1 )
SCALOC = ONE
ELSE
* The system op(A) * x = b is badly scaled and its
* solution cannot be represented as (1/scale) * x.
* Set x to zero. This approach deviates from LATRS
* where a completely meaningless non-zero vector
* is returned that is not a solution to op(A) * x = b.
SCALE( RHS ) = ZERO
DO II = 1, N
X( II, KK ) = ZERO
END DO
* Discard the local scale factors.
DO II = 1, NBA
WORK( II+KK*LDS ) = ONE
END DO
SCALOC = ONE
END IF
END IF
SCALOC = SCALOC * WORK( J+KK*LDS )
WORK( J+KK*LDS ) = SCALOC
END DO
*
* Linear block updates
*
IF( NOTRAN ) THEN
IF( UPPER ) THEN
IFIRST = J - 1
ILAST = 1
IINC = -1
ELSE
IFIRST = J + 1
ILAST = NBA
IINC = 1
END IF
ELSE
IF( UPPER ) THEN
IFIRST = J + 1
ILAST = NBA
IINC = 1
ELSE
IFIRST = J - 1
ILAST = 1
IINC = -1
END IF
END IF
*
DO I = IFIRST, ILAST, IINC
* I1: row index of the first column in X( I, K )
* I2: row index of the first column in X( I+1, K )
* so the I2 - I1 is the row count of the block X( I, K )
I1 = (I-1)*NB + 1
I2 = MIN( I*NB, N ) + 1
*
* Prepare the linear update to be executed with GEMM.
* For each column, compute a consistent scaling, a
* scaling factor to survive the linear update, and
* rescale the column segments, if necessary. Then
* the linear update is safely executed.
*
DO KK = 1, K2-K1
RHS = K1 + KK - 1
* Compute consistent scaling
SCAMIN = MIN( WORK( I + KK*LDS), WORK( J + KK*LDS ) )
*
* Compute scaling factor to survive the linear update
* simulating consistent scaling.
*
BNRM = DLANGE( 'I', I2-I1, 1, X( I1, RHS ), LDX,
$ W )
BNRM = BNRM*( SCAMIN / WORK( I+KK*LDS ) )
XNRM( KK ) = XNRM( KK )*(SCAMIN / WORK( J+KK*LDS ))
ANRM = WORK( AWRK + I+(J-1)*NBA )
SCALOC = DLARMM( ANRM, XNRM( KK ), BNRM )
*
* Simultaneously apply the robust update factor and the
* consistency scaling factor to B( I, KK ) and B( J, KK ).
*
SCAL = ( SCAMIN / WORK( I+KK*LDS) )*SCALOC
IF( SCAL.NE.ONE ) THEN
CALL DSCAL( I2-I1, SCAL, X( I1, RHS ), 1 )
WORK( I+KK*LDS ) = SCAMIN*SCALOC
END IF
*
SCAL = ( SCAMIN / WORK( J+KK*LDS ) )*SCALOC
IF( SCAL.NE.ONE ) THEN
CALL DSCAL( J2-J1, SCAL, X( J1, RHS ), 1 )
WORK( J+KK*LDS ) = SCAMIN*SCALOC
END IF
END DO
*
IF( NOTRAN ) THEN
*
* B( I, K ) := B( I, K ) - A( I, J ) * X( J, K )
*
CALL DGEMM( 'N', 'N', I2-I1, K2-K1, J2-J1, -ONE,
$ A( I1, J1 ), LDA, X( J1, K1 ), LDX,
$ ONE, X( I1, K1 ), LDX )
ELSE
*
* B( I, K ) := B( I, K ) - A( J, I )**T * X( J, K )
*
CALL DGEMM( 'T', 'N', I2-I1, K2-K1, J2-J1, -ONE,
$ A( J1, I1 ), LDA, X( J1, K1 ), LDX,
$ ONE, X( I1, K1 ), LDX )
END IF
END DO
END DO
*
* Reduce local scaling factors
*
DO KK = 1, K2-K1
RHS = K1 + KK - 1
DO I = 1, NBA
SCALE( RHS ) = MIN( SCALE( RHS ), WORK( I+KK*LDS ) )
END DO
END DO
*
* Realize consistent scaling
*
DO KK = 1, K2-K1
RHS = K1 + KK - 1
IF( SCALE( RHS ).NE.ONE .AND. SCALE( RHS ).NE. ZERO ) THEN
DO I = 1, NBA
I1 = (I-1)*NB + 1
I2 = MIN( I*NB, N ) + 1
SCAL = SCALE( RHS ) / WORK( I+KK*LDS )
IF( SCAL.NE.ONE )
$ CALL DSCAL( I2-I1, SCAL, X( I1, RHS ), 1 )
END DO
END IF
END DO
END DO
*
WORK( 1 ) = LWMIN
*
RETURN
*
* End of DLATRS3
*
END
|