1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628
|
*> \brief \b SLARFT forms the triangular factor T of a block reflector H = I - vtvH
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SLARFT + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarft.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarft.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarft.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* RECURSIVE SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV, TAU, T, LDT )
*
* .. Scalar Arguments ..
* CHARACTER DIRECT, STOREV
* INTEGER K, LDT, LDV, N
* ..
* .. Array Arguments ..
* REAL T( LDT, * ), TAU( * ), V( LDV, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARFT forms the triangular factor T of a real block reflector H
*> of order n, which is defined as a product of k elementary reflectors.
*>
*> If DIRECT = 'F', H = H(1) H(2) . . . H(k) and T is upper triangular;
*>
*> If DIRECT = 'B', H = H(k) . . . H(2) H(1) and T is lower triangular.
*>
*> If STOREV = 'C', the vector which defines the elementary reflector
*> H(i) is stored in the i-th column of the array V, and
*>
*> H = I - V * T * V**T
*>
*> If STOREV = 'R', the vector which defines the elementary reflector
*> H(i) is stored in the i-th row of the array V, and
*>
*> H = I - V**T * T * V
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DIRECT
*> \verbatim
*> DIRECT is CHARACTER*1
*> Specifies the order in which the elementary reflectors are
*> multiplied to form the block reflector:
*> = 'F': H = H(1) H(2) . . . H(k) (Forward)
*> = 'B': H = H(k) . . . H(2) H(1) (Backward)
*> \endverbatim
*>
*> \param[in] STOREV
*> \verbatim
*> STOREV is CHARACTER*1
*> Specifies how the vectors which define the elementary
*> reflectors are stored (see also Further Details):
*> = 'C': columnwise
*> = 'R': rowwise
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the block reflector H. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The order of the triangular factor T (= the number of
*> elementary reflectors). K >= 1.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is REAL array, dimension
*> (LDV,K) if STOREV = 'C'
*> (LDV,N) if STOREV = 'R'
*> The matrix V. See further details.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of the array V.
*> If STOREV = 'C', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is REAL array, dimension (K)
*> TAU(i) must contain the scalar factor of the elementary
*> reflector H(i).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is REAL array, dimension (LDT,K)
*> The k by k triangular factor T of the block reflector.
*> If DIRECT = 'F', T is upper triangular; if DIRECT = 'B', T is
*> lower triangular. The rest of the array is not used.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= K.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Johnathan Rhyne, Univ. of Colorado Denver (original author, 2024)
*> \author NAG Ltd.
*
*> \ingroup larft
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The shape of the matrix V and the storage of the vectors which define
*> the H(i) is best illustrated by the following example with n = 5 and
*> k = 3. The elements equal to 1 are not stored.
*>
*> DIRECT = 'F' and STOREV = 'C': DIRECT = 'F' and STOREV = 'R':
*>
*> V = ( 1 ) V = ( 1 v1 v1 v1 v1 )
*> ( v1 1 ) ( 1 v2 v2 v2 )
*> ( v1 v2 1 ) ( 1 v3 v3 )
*> ( v1 v2 v3 )
*> ( v1 v2 v3 )
*>
*> DIRECT = 'B' and STOREV = 'C': DIRECT = 'B' and STOREV = 'R':
*>
*> V = ( v1 v2 v3 ) V = ( v1 v1 1 )
*> ( v1 v2 v3 ) ( v2 v2 v2 1 )
*> ( 1 v2 v3 ) ( v3 v3 v3 v3 1 )
*> ( 1 v3 )
*> ( 1 )
*> \endverbatim
*>
* =====================================================================
RECURSIVE SUBROUTINE SLARFT( DIRECT, STOREV, N, K, V, LDV,
$ TAU, T, LDT )
*
* -- LAPACK auxiliary routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments
*
CHARACTER DIRECT, STOREV
INTEGER K, LDT, LDV, N
* ..
* .. Array Arguments ..
*
REAL T( LDT, * ), TAU( * ), V( LDV, * )
* ..
*
* .. Parameters ..
*
REAL ONE, NEG_ONE, ZERO
PARAMETER(ONE=1.0E+0, ZERO = 0.0E+0, NEG_ONE=-1.0E+0)
*
* .. Local Scalars ..
*
INTEGER I,J,L
LOGICAL QR,LQ,QL,DIRF,COLV
*
* .. External Subroutines ..
*
EXTERNAL STRMM,SGEMM,SLACPY
*
* .. External Functions..
*
LOGICAL LSAME
EXTERNAL LSAME
*
* The general scheme used is inspired by the approach inside DGEQRT3
* which was (at the time of writing this code):
* Based on the algorithm of Elmroth and Gustavson,
* IBM J. Res. Develop. Vol 44 No. 4 July 2000.
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF(N.EQ.0.OR.K.EQ.0) THEN
RETURN
END IF
*
* Base case
*
IF(N.EQ.1.OR.K.EQ.1) THEN
T(1,1) = TAU(1)
RETURN
END IF
*
* Beginning of executable statements
*
L = K / 2
*
* Determine what kind of Q we need to compute
* We assume that if the user doesn't provide 'F' for DIRECT,
* then they meant to provide 'B' and if they don't provide
* 'C' for STOREV, then they meant to provide 'R'
*
DIRF = LSAME(DIRECT,'F')
COLV = LSAME(STOREV,'C')
*
* QR happens when we have forward direction in column storage
*
QR = DIRF.AND.COLV
*
* LQ happens when we have forward direction in row storage
*
LQ = DIRF.AND.(.NOT.COLV)
*
* QL happens when we have backward direction in column storage
*
QL = (.NOT.DIRF).AND.COLV
*
* The last case is RQ. Due to how we structured this, if the
* above 3 are false, then RQ must be true, so we never store
* this
* RQ happens when we have backward direction in row storage
* RQ = (.NOT.DIRF).AND.(.NOT.COLV)
*
IF(QR) THEN
*
* Break V apart into 6 components
*
* V = |---------------|
* |V_{1,1} 0 |
* |V_{2,1} V_{2,2}|
* |V_{3,1} V_{3,2}|
* |---------------|
*
* V_{1,1}\in\R^{l,l} unit lower triangular
* V_{2,1}\in\R^{k-l,l} rectangular
* V_{3,1}\in\R^{n-k,l} rectangular
*
* V_{2,2}\in\R^{k-l,k-l} unit lower triangular
* V_{3,2}\in\R^{n-k,k-l} rectangular
*
* We will construct the T matrix
* T = |---------------|
* |T_{1,1} T_{1,2}|
* |0 T_{2,2}|
* |---------------|
*
* T is the triangular factor obtained from block reflectors.
* To motivate the structure, assume we have already computed T_{1,1}
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2
*
* T_{1,1}\in\R^{l, l} upper triangular
* T_{2,2}\in\R^{k-l, k-l} upper triangular
* T_{1,2}\in\R^{l, k-l} rectangular
*
* Where l = floor(k/2)
*
* Then, consider the product:
*
* (I - V_1*T_{1,1}*V_1')*(I - V_2*T_{2,2}*V_2')
* = I - V_1*T_{1,1}*V_1' - V_2*T_{2,2}*V_2' + V_1*T_{1,1}*V_1'*V_2*T_{2,2}*V_2'
*
* Define T_{1,2} = -T_{1,1}*V_1'*V_2*T_{2,2}
*
* Then, we can define the matrix V as
* V = |-------|
* |V_1 V_2|
* |-------|
*
* So, our product is equivalent to the matrix product
* I - V*T*V'
* This means, we can compute T_{1,1} and T_{2,2}, then use this information
* to compute T_{1,2}
*
* Compute T_{1,1} recursively
*
CALL SLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT)
*
* Compute T_{2,2} recursively
*
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV,
$ TAU(L+1), T(L+1, L+1), LDT)
*
* Compute T_{1,2}
* T_{1,2} = V_{2,1}'
*
DO J = 1, L
DO I = 1, K-L
T(J, L+I) = V(L+I, J)
END DO
END DO
*
* T_{1,2} = T_{1,2}*V_{2,2}
*
CALL STRMM('Right', 'Lower', 'No transpose', 'Unit', L,
$ K-L, ONE, V(L+1, L+1), LDV, T(1, L+1), LDT)
*
* T_{1,2} = V_{3,1}'*V_{3,2} + T_{1,2}
* Note: We assume K <= N, and GEMM will do nothing if N=K
*
CALL SGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE,
$ V(K+1, 1), LDV, V(K+1, L+1), LDV, ONE,
$ T(1, L+1), LDT)
*
* At this point, we have that T_{1,2} = V_1'*V_2
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2}
* respectively.
*
* T_{1,2} = -T_{1,1}*T_{1,2}
*
CALL STRMM('Left', 'Upper', 'No transpose', 'Non-unit', L,
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT)
*
* T_{1,2} = T_{1,2}*T_{2,2}
*
CALL STRMM('Right', 'Upper', 'No transpose', 'Non-unit', L,
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT)
ELSE IF(LQ) THEN
*
* Break V apart into 6 components
*
* V = |----------------------|
* |V_{1,1} V_{1,2} V{1,3}|
* |0 V_{2,2} V{2,3}|
* |----------------------|
*
* V_{1,1}\in\R^{l,l} unit upper triangular
* V_{1,2}\in\R^{l,k-l} rectangular
* V_{1,3}\in\R^{l,n-k} rectangular
*
* V_{2,2}\in\R^{k-l,k-l} unit upper triangular
* V_{2,3}\in\R^{k-l,n-k} rectangular
*
* Where l = floor(k/2)
*
* We will construct the T matrix
* T = |---------------|
* |T_{1,1} T_{1,2}|
* |0 T_{2,2}|
* |---------------|
*
* T is the triangular factor obtained from block reflectors.
* To motivate the structure, assume we have already computed T_{1,1}
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2
*
* T_{1,1}\in\R^{l, l} upper triangular
* T_{2,2}\in\R^{k-l, k-l} upper triangular
* T_{1,2}\in\R^{l, k-l} rectangular
*
* Then, consider the product:
*
* (I - V_1'*T_{1,1}*V_1)*(I - V_2'*T_{2,2}*V_2)
* = I - V_1'*T_{1,1}*V_1 - V_2'*T_{2,2}*V_2 + V_1'*T_{1,1}*V_1*V_2'*T_{2,2}*V_2
*
* Define T_{1,2} = -T_{1,1}*V_1*V_2'*T_{2,2}
*
* Then, we can define the matrix V as
* V = |---|
* |V_1|
* |V_2|
* |---|
*
* So, our product is equivalent to the matrix product
* I - V'*T*V
* This means, we can compute T_{1,1} and T_{2,2}, then use this information
* to compute T_{1,2}
*
* Compute T_{1,1} recursively
*
CALL SLARFT(DIRECT, STOREV, N, L, V, LDV, TAU, T, LDT)
*
* Compute T_{2,2} recursively
*
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V(L+1, L+1), LDV,
$ TAU(L+1), T(L+1, L+1), LDT)
*
* Compute T_{1,2}
* T_{1,2} = V_{1,2}
*
CALL SLACPY('All', L, K-L, V(1, L+1), LDV, T(1, L+1), LDT)
*
* T_{1,2} = T_{1,2}*V_{2,2}'
*
CALL STRMM('Right', 'Upper', 'Transpose', 'Unit', L, K-L,
$ ONE, V(L+1, L+1), LDV, T(1, L+1), LDT)
*
* T_{1,2} = V_{1,3}*V_{2,3}' + T_{1,2}
* Note: We assume K <= N, and GEMM will do nothing if N=K
*
CALL SGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE,
$ V(1, K+1), LDV, V(L+1, K+1), LDV, ONE,
$ T(1, L+1), LDT)
*
* At this point, we have that T_{1,2} = V_1*V_2'
* All that is left is to pre and post multiply by -T_{1,1} and T_{2,2}
* respectively.
*
* T_{1,2} = -T_{1,1}*T_{1,2}
*
CALL STRMM('Left', 'Upper', 'No transpose', 'Non-unit', L,
$ K-L, NEG_ONE, T, LDT, T(1, L+1), LDT)
*
* T_{1,2} = T_{1,2}*T_{2,2}
*
CALL STRMM('Right', 'Upper', 'No transpose', 'Non-unit', L,
$ K-L, ONE, T(L+1, L+1), LDT, T(1, L+1), LDT)
ELSE IF(QL) THEN
*
* Break V apart into 6 components
*
* V = |---------------|
* |V_{1,1} V_{1,2}|
* |V_{2,1} V_{2,2}|
* |0 V_{3,2}|
* |---------------|
*
* V_{1,1}\in\R^{n-k,k-l} rectangular
* V_{2,1}\in\R^{k-l,k-l} unit upper triangular
*
* V_{1,2}\in\R^{n-k,l} rectangular
* V_{2,2}\in\R^{k-l,l} rectangular
* V_{3,2}\in\R^{l,l} unit upper triangular
*
* We will construct the T matrix
* T = |---------------|
* |T_{1,1} 0 |
* |T_{2,1} T_{2,2}|
* |---------------|
*
* T is the triangular factor obtained from block reflectors.
* To motivate the structure, assume we have already computed T_{1,1}
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2
*
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular
* T_{2,2}\in\R^{l, l} non-unit lower triangular
* T_{2,1}\in\R^{k-l, l} rectangular
*
* Where l = floor(k/2)
*
* Then, consider the product:
*
* (I - V_2*T_{2,2}*V_2')*(I - V_1*T_{1,1}*V_1')
* = I - V_2*T_{2,2}*V_2' - V_1*T_{1,1}*V_1' + V_2*T_{2,2}*V_2'*V_1*T_{1,1}*V_1'
*
* Define T_{2,1} = -T_{2,2}*V_2'*V_1*T_{1,1}
*
* Then, we can define the matrix V as
* V = |-------|
* |V_1 V_2|
* |-------|
*
* So, our product is equivalent to the matrix product
* I - V*T*V'
* This means, we can compute T_{1,1} and T_{2,2}, then use this information
* to compute T_{2,1}
*
* Compute T_{1,1} recursively
*
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT)
*
* Compute T_{2,2} recursively
*
CALL SLARFT(DIRECT, STOREV, N, L, V(1, K-L+1), LDV,
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT)
*
* Compute T_{2,1}
* T_{2,1} = V_{2,2}'
*
DO J = 1, K-L
DO I = 1, L
T(K-L+I, J) = V(N-K+J, K-L+I)
END DO
END DO
*
* T_{2,1} = T_{2,1}*V_{2,1}
*
CALL STRMM('Right', 'Upper', 'No transpose', 'Unit', L,
$ K-L, ONE, V(N-K+1, 1), LDV, T(K-L+1, 1), LDT)
*
* T_{2,1} = V_{2,2}'*V_{2,1} + T_{2,1}
* Note: We assume K <= N, and GEMM will do nothing if N=K
*
CALL SGEMM('Transpose', 'No transpose', L, K-L, N-K, ONE,
$ V(1, K-L+1), LDV, V, LDV, ONE, T(K-L+1, 1),
$ LDT)
*
* At this point, we have that T_{2,1} = V_2'*V_1
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1}
* respectively.
*
* T_{2,1} = -T_{2,2}*T_{2,1}
*
CALL STRMM('Left', 'Lower', 'No transpose', 'Non-unit', L,
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT,
$ T(K-L+1, 1), LDT)
*
* T_{2,1} = T_{2,1}*T_{1,1}
*
CALL STRMM('Right', 'Lower', 'No transpose', 'Non-unit', L,
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT)
ELSE
*
* Else means RQ case
*
* Break V apart into 6 components
*
* V = |-----------------------|
* |V_{1,1} V_{1,2} 0 |
* |V_{2,1} V_{2,2} V_{2,3}|
* |-----------------------|
*
* V_{1,1}\in\R^{k-l,n-k} rectangular
* V_{1,2}\in\R^{k-l,k-l} unit lower triangular
*
* V_{2,1}\in\R^{l,n-k} rectangular
* V_{2,2}\in\R^{l,k-l} rectangular
* V_{2,3}\in\R^{l,l} unit lower triangular
*
* We will construct the T matrix
* T = |---------------|
* |T_{1,1} 0 |
* |T_{2,1} T_{2,2}|
* |---------------|
*
* T is the triangular factor obtained from block reflectors.
* To motivate the structure, assume we have already computed T_{1,1}
* and T_{2,2}. Then collect the associated reflectors in V_1 and V_2
*
* T_{1,1}\in\R^{k-l, k-l} non-unit lower triangular
* T_{2,2}\in\R^{l, l} non-unit lower triangular
* T_{2,1}\in\R^{k-l, l} rectangular
*
* Where l = floor(k/2)
*
* Then, consider the product:
*
* (I - V_2'*T_{2,2}*V_2)*(I - V_1'*T_{1,1}*V_1)
* = I - V_2'*T_{2,2}*V_2 - V_1'*T_{1,1}*V_1 + V_2'*T_{2,2}*V_2*V_1'*T_{1,1}*V_1
*
* Define T_{2,1} = -T_{2,2}*V_2*V_1'*T_{1,1}
*
* Then, we can define the matrix V as
* V = |---|
* |V_1|
* |V_2|
* |---|
*
* So, our product is equivalent to the matrix product
* I - V'TV
* This means, we can compute T_{1,1} and T_{2,2}, then use this information
* to compute T_{2,1}
*
* Compute T_{1,1} recursively
*
CALL SLARFT(DIRECT, STOREV, N-L, K-L, V, LDV, TAU, T, LDT)
*
* Compute T_{2,2} recursively
*
CALL SLARFT(DIRECT, STOREV, N, L, V(K-L+1, 1), LDV,
$ TAU(K-L+1), T(K-L+1, K-L+1), LDT)
*
* Compute T_{2,1}
* T_{2,1} = V_{2,2}
*
CALL SLACPY('All', L, K-L, V(K-L+1, N-K+1), LDV,
$ T(K-L+1, 1), LDT)
*
* T_{2,1} = T_{2,1}*V_{1,2}'
*
CALL STRMM('Right', 'Lower', 'Transpose', 'Unit', L, K-L,
$ ONE, V(1, N-K+1), LDV, T(K-L+1, 1), LDT)
*
* T_{2,1} = V_{2,1}*V_{1,1}' + T_{2,1}
* Note: We assume K <= N, and GEMM will do nothing if N=K
*
CALL SGEMM('No transpose', 'Transpose', L, K-L, N-K, ONE,
$ V(K-L+1, 1), LDV, V, LDV, ONE, T(K-L+1, 1),
$ LDT)
*
* At this point, we have that T_{2,1} = V_2*V_1'
* All that is left is to pre and post multiply by -T_{2,2} and T_{1,1}
* respectively.
*
* T_{2,1} = -T_{2,2}*T_{2,1}
*
CALL STRMM('Left', 'Lower', 'No tranpose', 'Non-unit', L,
$ K-L, NEG_ONE, T(K-L+1, K-L+1), LDT,
$ T(K-L+1, 1), LDT)
*
* T_{2,1} = T_{2,1}*T_{1,1}
*
CALL STRMM('Right', 'Lower', 'No tranpose', 'Non-unit', L,
$ K-L, ONE, T, LDT, T(K-L+1, 1), LDT)
END IF
END SUBROUTINE
|