1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
*> \brief \b ZGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZGEQRT3 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeqrt3.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeqrt3.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeqrt3.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* RECURSIVE SUBROUTINE ZGEQRT3( M, N, A, LDA, T, LDT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, M, N, LDT
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), T( LDT, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGEQRT3 recursively computes a QR factorization of a complex M-by-N
*> matrix A, using the compact WY representation of Q.
*>
*> Based on the algorithm of Elmroth and Gustavson,
*> IBM J. Res. Develop. Vol 44 No. 4 July 2000.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= N.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the complex M-by-N matrix A. On exit, the elements on
*> and above the diagonal contain the N-by-N upper triangular matrix R;
*> the elements below the diagonal are the columns of V. See below for
*> further details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX*16 array, dimension (LDT,N)
*> The N-by-N upper triangular factor of the block reflector.
*> The elements on and above the diagonal contain the block
*> reflector T; the elements below the diagonal are not used.
*> See below for further details.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup geqrt3
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> The matrix V stores the elementary reflectors H(i) in the i-th column
*> below the diagonal. For example, if M=5 and N=3, the matrix V is
*>
*> V = ( 1 )
*> ( v1 1 )
*> ( v1 v2 1 )
*> ( v1 v2 v3 )
*> ( v1 v2 v3 )
*>
*> where the vi's represent the vectors which define H(i), which are returned
*> in the matrix A. The 1's along the diagonal of V are not stored in A. The
*> block reflector H is then given by
*>
*> H = I - V * T * V**H
*>
*> where V**H is the conjugate transpose of V.
*>
*> For details of the algorithm, see Elmroth and Gustavson (cited above).
*> \endverbatim
*>
* =====================================================================
RECURSIVE SUBROUTINE ZGEQRT3( M, N, A, LDA, T, LDT, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, M, N, LDT
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), T( LDT, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER ( ONE = (1.0D+00,0.0D+00) )
* ..
* .. Local Scalars ..
INTEGER I, I1, J, J1, N1, N2, IINFO
* ..
* .. External Subroutines ..
EXTERNAL ZLARFG, ZTRMM, ZGEMM, XERBLA
* ..
* .. Executable Statements ..
*
INFO = 0
IF( N .LT. 0 ) THEN
INFO = -2
ELSE IF( M .LT. N ) THEN
INFO = -1
ELSE IF( LDA .LT. MAX( 1, M ) ) THEN
INFO = -4
ELSE IF( LDT .LT. MAX( 1, N ) ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZGEQRT3', -INFO )
RETURN
END IF
*
IF( N.EQ.1 ) THEN
*
* Compute Householder transform when N=1
*
CALL ZLARFG( M, A(1,1), A( MIN( 2, M ), 1 ), 1, T(1,1) )
*
ELSE
*
* Otherwise, split A into blocks...
*
N1 = N/2
N2 = N-N1
J1 = MIN( N1+1, N )
I1 = MIN( N+1, M )
*
* Compute A(1:M,1:N1) <- (Y1,R1,T1), where Q1 = I - Y1 T1 Y1^H
*
CALL ZGEQRT3( M, N1, A, LDA, T, LDT, IINFO )
*
* Compute A(1:M,J1:N) = Q1^H A(1:M,J1:N) [workspace: T(1:N1,J1:N)]
*
DO J=1,N2
DO I=1,N1
T( I, J+N1 ) = A( I, J+N1 )
END DO
END DO
CALL ZTRMM( 'L', 'L', 'C', 'U', N1, N2, ONE,
& A, LDA, T( 1, J1 ), LDT )
*
CALL ZGEMM( 'C', 'N', N1, N2, M-N1, ONE, A( J1, 1 ), LDA,
& A( J1, J1 ), LDA, ONE, T( 1, J1 ), LDT)
*
CALL ZTRMM( 'L', 'U', 'C', 'N', N1, N2, ONE,
& T, LDT, T( 1, J1 ), LDT )
*
CALL ZGEMM( 'N', 'N', M-N1, N2, N1, -ONE, A( J1, 1 ), LDA,
& T( 1, J1 ), LDT, ONE, A( J1, J1 ), LDA )
*
CALL ZTRMM( 'L', 'L', 'N', 'U', N1, N2, ONE,
& A, LDA, T( 1, J1 ), LDT )
*
DO J=1,N2
DO I=1,N1
A( I, J+N1 ) = A( I, J+N1 ) - T( I, J+N1 )
END DO
END DO
*
* Compute A(J1:M,J1:N) <- (Y2,R2,T2) where Q2 = I - Y2 T2 Y2^H
*
CALL ZGEQRT3( M-N1, N2, A( J1, J1 ), LDA,
& T( J1, J1 ), LDT, IINFO )
*
* Compute T3 = T(1:N1,J1:N) = -T1 Y1^H Y2 T2
*
DO I=1,N1
DO J=1,N2
T( I, J+N1 ) = CONJG(A( J+N1, I ))
END DO
END DO
*
CALL ZTRMM( 'R', 'L', 'N', 'U', N1, N2, ONE,
& A( J1, J1 ), LDA, T( 1, J1 ), LDT )
*
CALL ZGEMM( 'C', 'N', N1, N2, M-N, ONE, A( I1, 1 ), LDA,
& A( I1, J1 ), LDA, ONE, T( 1, J1 ), LDT )
*
CALL ZTRMM( 'L', 'U', 'N', 'N', N1, N2, -ONE, T, LDT,
& T( 1, J1 ), LDT )
*
CALL ZTRMM( 'R', 'U', 'N', 'N', N1, N2, ONE,
& T( J1, J1 ), LDT, T( 1, J1 ), LDT )
*
* Y = (Y1,Y2); R = [ R1 A(1:N1,J1:N) ]; T = [T1 T3]
* [ 0 R2 ] [ 0 T2]
*
END IF
*
RETURN
*
* End of ZGEQRT3
*
END
|