1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
*> \brief \b ZHEGS2 reduces a Hermitian definite generalized eigenproblem to standard form, using the factorization results obtained from cpotrf (unblocked algorithm).
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZHEGS2 + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhegs2.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhegs2.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhegs2.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, ITYPE, LDA, LDB, N
* ..
* .. Array Arguments ..
* COMPLEX*16 A( LDA, * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZHEGS2 reduces a complex Hermitian-definite generalized
*> eigenproblem to standard form.
*>
*> If ITYPE = 1, the problem is A*x = lambda*B*x,
*> and A is overwritten by inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H)
*>
*> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
*> B*A*x = lambda*x, and A is overwritten by U*A*U**H or L**H *A*L.
*>
*> B must have been previously factorized as U**H *U or L*L**H by ZPOTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> = 1: compute inv(U**H)*A*inv(U) or inv(L)*A*inv(L**H);
*> = 2 or 3: compute U*A*U**H or L**H *A*L.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored, and how B has been factorized.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> On entry, the Hermitian matrix A. If UPLO = 'U', the leading
*> n by n upper triangular part of A contains the upper
*> triangular part of the matrix A, and the strictly lower
*> triangular part of A is not referenced. If UPLO = 'L', the
*> leading n by n lower triangular part of A contains the lower
*> triangular part of the matrix A, and the strictly upper
*> triangular part of A is not referenced.
*>
*> On exit, if INFO = 0, the transformed matrix, stored in the
*> same format as A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,N)
*> The triangular factor from the Cholesky factorization of B,
*> as returned by ZPOTRF.
*> B is modified by the routine but restored on exit.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup hegs2
*
* =====================================================================
SUBROUTINE ZHEGS2( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, ITYPE, LDA, LDB, N
* ..
* .. Array Arguments ..
COMPLEX*16 A( LDA, * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, HALF
PARAMETER ( ONE = 1.0D+0, HALF = 0.5D+0 )
COMPLEX*16 CONE
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER K
DOUBLE PRECISION AKK, BKK
COMPLEX*16 CT
* ..
* .. External Subroutines ..
EXTERNAL XERBLA, ZAXPY, ZDSCAL, ZHER2, ZLACGV,
$ ZTRMV,
$ ZTRSV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZHEGS2', -INFO )
RETURN
END IF
*
IF( ITYPE.EQ.1 ) THEN
IF( UPPER ) THEN
*
* Compute inv(U**H)*A*inv(U)
*
DO 10 K = 1, N
*
* Update the upper triangle of A(k:n,k:n)
*
AKK = DBLE( A( K, K ) )
BKK = DBLE( B( K, K ) )
AKK = AKK / BKK**2
A( K, K ) = AKK
IF( K.LT.N ) THEN
CALL ZDSCAL( N-K, ONE / BKK, A( K, K+1 ), LDA )
CT = -HALF*AKK
CALL ZLACGV( N-K, A( K, K+1 ), LDA )
CALL ZLACGV( N-K, B( K, K+1 ), LDB )
CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
$ LDA )
CALL ZHER2( UPLO, N-K, -CONE, A( K, K+1 ), LDA,
$ B( K, K+1 ), LDB, A( K+1, K+1 ), LDA )
CALL ZAXPY( N-K, CT, B( K, K+1 ), LDB, A( K, K+1 ),
$ LDA )
CALL ZLACGV( N-K, B( K, K+1 ), LDB )
CALL ZTRSV( UPLO, 'Conjugate transpose',
$ 'Non-unit',
$ N-K, B( K+1, K+1 ), LDB, A( K, K+1 ),
$ LDA )
CALL ZLACGV( N-K, A( K, K+1 ), LDA )
END IF
10 CONTINUE
ELSE
*
* Compute inv(L)*A*inv(L**H)
*
DO 20 K = 1, N
*
* Update the lower triangle of A(k:n,k:n)
*
AKK = DBLE( A( K, K ) )
BKK = DBLE( B( K, K ) )
AKK = AKK / BKK**2
A( K, K ) = AKK
IF( K.LT.N ) THEN
CALL ZDSCAL( N-K, ONE / BKK, A( K+1, K ), 1 )
CT = -HALF*AKK
CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ),
$ 1 )
CALL ZHER2( UPLO, N-K, -CONE, A( K+1, K ), 1,
$ B( K+1, K ), 1, A( K+1, K+1 ), LDA )
CALL ZAXPY( N-K, CT, B( K+1, K ), 1, A( K+1, K ),
$ 1 )
CALL ZTRSV( UPLO, 'No transpose', 'Non-unit', N-K,
$ B( K+1, K+1 ), LDB, A( K+1, K ), 1 )
END IF
20 CONTINUE
END IF
ELSE
IF( UPPER ) THEN
*
* Compute U*A*U**H
*
DO 30 K = 1, N
*
* Update the upper triangle of A(1:k,1:k)
*
AKK = DBLE( A( K, K ) )
BKK = DBLE( B( K, K ) )
CALL ZTRMV( UPLO, 'No transpose', 'Non-unit', K-1, B,
$ LDB, A( 1, K ), 1 )
CT = HALF*AKK
CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
CALL ZHER2( UPLO, K-1, CONE, A( 1, K ), 1, B( 1, K ),
$ 1,
$ A, LDA )
CALL ZAXPY( K-1, CT, B( 1, K ), 1, A( 1, K ), 1 )
CALL ZDSCAL( K-1, BKK, A( 1, K ), 1 )
A( K, K ) = AKK*BKK**2
30 CONTINUE
ELSE
*
* Compute L**H *A*L
*
DO 40 K = 1, N
*
* Update the lower triangle of A(1:k,1:k)
*
AKK = DBLE( A( K, K ) )
BKK = DBLE( B( K, K ) )
CALL ZLACGV( K-1, A( K, 1 ), LDA )
CALL ZTRMV( UPLO, 'Conjugate transpose', 'Non-unit',
$ K-1,
$ B, LDB, A( K, 1 ), LDA )
CT = HALF*AKK
CALL ZLACGV( K-1, B( K, 1 ), LDB )
CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
CALL ZHER2( UPLO, K-1, CONE, A( K, 1 ), LDA, B( K,
$ 1 ),
$ LDB, A, LDA )
CALL ZAXPY( K-1, CT, B( K, 1 ), LDB, A( K, 1 ), LDA )
CALL ZLACGV( K-1, B( K, 1 ), LDB )
CALL ZDSCAL( K-1, BKK, A( K, 1 ), LDA )
CALL ZLACGV( K-1, A( K, 1 ), LDA )
A( K, K ) = AKK*BKK**2
40 CONTINUE
END IF
END IF
RETURN
*
* End of ZHEGS2
*
END
|