| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 
 | *> \brief \b DSTECT
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DSTECT( N, A, B, SHIFT, NUM )
*
*       .. Scalar Arguments ..
*       INTEGER            N, NUM
*       DOUBLE PRECISION   SHIFT
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( * ), B( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    DSTECT counts the number NUM of eigenvalues of a tridiagonal
*>    matrix T which are less than or equal to SHIFT. T has
*>    diagonal entries A(1), ... , A(N), and offdiagonal entries
*>    B(1), ..., B(N-1).
*>    See W. Kahan "Accurate Eigenvalues of a Symmetric Tridiagonal
*>    Matrix", Report CS41, Computer Science Dept., Stanford
*>    University, July 21, 1966
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The dimension of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (N)
*>          The diagonal entries of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (N-1)
*>          The offdiagonal entries of the tridiagonal matrix T.
*> \endverbatim
*>
*> \param[in] SHIFT
*> \verbatim
*>          SHIFT is DOUBLE PRECISION
*>          The shift, used as described under Purpose.
*> \endverbatim
*>
*> \param[out] NUM
*> \verbatim
*>          NUM is INTEGER
*>          The number of eigenvalues of T less than or equal
*>          to SHIFT.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DSTECT( N, A, B, SHIFT, NUM )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            N, NUM
      DOUBLE PRECISION   SHIFT
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( * ), B( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE, THREE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, THREE = 3.0D0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   M1, M2, MX, OVFL, SOV, SSHIFT, SSUN, SUN, TMP,
     $                   TOM, U, UNFL
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH
      EXTERNAL           DLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, SQRT
*     ..
*     .. Executable Statements ..
*
*     Get machine constants
*
      UNFL = DLAMCH( 'Safe minimum' )
      OVFL = DLAMCH( 'Overflow' )
*
*     Find largest entry
*
      MX = ABS( A( 1 ) )
      DO 10 I = 1, N - 1
         MX = MAX( MX, ABS( A( I+1 ) ), ABS( B( I ) ) )
   10 CONTINUE
*
*     Handle easy cases, including zero matrix
*
      IF( SHIFT.GE.THREE*MX ) THEN
         NUM = N
         RETURN
      END IF
      IF( SHIFT.LT.-THREE*MX ) THEN
         NUM = 0
         RETURN
      END IF
*
*     Compute scale factors as in Kahan's report
*     At this point, MX .NE. 0 so we can divide by it
*
      SUN = SQRT( UNFL )
      SSUN = SQRT( SUN )
      SOV = SQRT( OVFL )
      TOM = SSUN*SOV
      IF( MX.LE.ONE ) THEN
         M1 = ONE / MX
         M2 = TOM
      ELSE
         M1 = ONE
         M2 = TOM / MX
      END IF
*
*     Begin counting
*
      NUM = 0
      SSHIFT = ( SHIFT*M1 )*M2
      U = ( A( 1 )*M1 )*M2 - SSHIFT
      IF( U.LE.SUN ) THEN
         IF( U.LE.ZERO ) THEN
            NUM = NUM + 1
            IF( U.GT.-SUN )
     $         U = -SUN
         ELSE
            U = SUN
         END IF
      END IF
      DO 20 I = 2, N
         TMP = ( B( I-1 )*M1 )*M2
         U = ( ( A( I )*M1 )*M2-TMP*( TMP / U ) ) - SSHIFT
         IF( U.LE.SUN ) THEN
            IF( U.LE.ZERO ) THEN
               NUM = NUM + 1
               IF( U.GT.-SUN )
     $            U = -SUN
            ELSE
               U = SUN
            END IF
         END IF
   20 CONTINUE
      RETURN
*
*     End of DSTECT
*
      END
 |