| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 
 | *> \brief \b CGBT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
*                          LDB, RWORK, RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          TRANS
*       INTEGER            KL, KU, LDA, LDB, LDX, M, N, NRHS
*       REAL               RESID
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * )
*       COMPLEX            A( LDA, * ), B( LDB, * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CGBT02 computes the residual for a solution of a banded system of
*> equations op(A)*X = B:
*>    RESID = norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ),
*> where op(A) = A, A**T, or A**H, depending on TRANS, and EPS is the
*> machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the form of the system of equations:
*>          = 'N':  A    * X = B  (No transpose)
*>          = 'T':  A**T * X = B  (Transpose)
*>          = 'C':  A**H * X = B  (Conjugate transpose)
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of subdiagonals within the band of A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of superdiagonals within the band of A.  KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of columns of B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The original matrix A in band storage, stored in rows 1 to
*>          KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is COMPLEX array, dimension (LDX,NRHS)
*>          The computed solution vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  If TRANS = 'N',
*>          LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,NRHS)
*>          On entry, the right hand side vectors for the system of
*>          linear equations.
*>          On exit, B is overwritten with the difference B - A*X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  IF TRANS = 'N',
*>          LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (MAX(1,LRWORK)),
*>          where LRWORK >= M when TRANS = 'T' or 'C'; otherwise, RWORK
*>          is not referenced.
*> \endverbatim
*
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          The maximum over the number of right hand sides of
*>          norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
     $                   LDB, RWORK, RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          TRANS
      INTEGER            KL, KU, LDA, LDB, LDX, M, N, NRHS
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            CONE
      PARAMETER          ( CONE = ( 1.0E+0, 0.0E+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I1, I2, J, KD, N1
      REAL               ANORM, BNORM, EPS, TEMP, XNORM
      COMPLEX            CDUM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, SISNAN
      REAL               SCASUM, SLAMCH
      EXTERNAL           LSAME, SCASUM, SISNAN, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGBMV
*     ..
*     .. Statement Functions ..
      REAL               CABS1
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, AIMAG, MAX, MIN, REAL
*     ..
*     .. Statement Function definitions ..
      CABS1( CDUM ) = ABS( REAL( CDUM ) ) + ABS( AIMAG( CDUM ) )
*     ..
*     .. Executable Statements ..
*
*     Quick return if N = 0 pr NRHS = 0
*
      IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0.
*
      EPS = SLAMCH( 'Epsilon' )
      ANORM = ZERO
      IF( LSAME( TRANS, 'N' ) ) THEN
*
*        Find norm1(A).
*
         KD = KU + 1
         DO 10 J = 1, N
            I1 = MAX( KD+1-J, 1 )
            I2 = MIN( KD+M-J, KL+KD )
            IF( I2.GE.I1 ) THEN
               TEMP = SCASUM( I2-I1+1, A( I1, J ), 1 )
               IF( ANORM.LT.TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
            END IF
   10    CONTINUE
      ELSE
*
*        Find normI(A).
*
         DO 12 I1 = 1, M
            RWORK( I1 ) = ZERO
   12    CONTINUE
         DO 16 J = 1, N
            KD = KU + 1 - J
            DO 14 I1 = MAX( 1, J-KU ), MIN( M, J+KL )
               RWORK( I1 ) = RWORK( I1 ) + CABS1( A( KD+I1, J ) )
   14       CONTINUE
   16    CONTINUE
         DO 18 I1 = 1, M
            TEMP = RWORK( I1 )
            IF( ANORM.LT.TEMP .OR. SISNAN( TEMP ) ) ANORM = TEMP
   18    CONTINUE
      END IF
      IF( ANORM.LE.ZERO ) THEN
         RESID = ONE / EPS
         RETURN
      END IF
*
      IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
         N1 = N
      ELSE
         N1 = M
      END IF
*
*     Compute B - op(A)*X
*
      DO 20 J = 1, NRHS
         CALL CGBMV( TRANS, M, N, KL, KU, -CONE, A, LDA, X( 1, J ), 1,
     $               CONE, B( 1, J ), 1 )
   20 CONTINUE
*
*     Compute the maximum over the number of right hand sides of
*        norm(B - op(A)*X) / ( norm(op(A)) * norm(X) * EPS ).
*
      RESID = ZERO
      DO 30 J = 1, NRHS
         BNORM = SCASUM( N1, B( 1, J ), 1 )
         XNORM = SCASUM( N1, X( 1, J ), 1 )
         IF( XNORM.LE.ZERO ) THEN
            RESID = ONE / EPS
         ELSE
            RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS )
         END IF
   30 CONTINUE
*
      RETURN
*
*     End of CGBT02
*
      END
 |