| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 
 | *> \brief \b STBT03
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE STBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
*                          SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
*                          RESID )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, TRANS, UPLO
*       INTEGER            KD, LDAB, LDB, LDX, N, NRHS
*       REAL               RESID, SCALE, TSCAL
*       ..
*       .. Array Arguments ..
*       REAL               AB( LDAB, * ), B( LDB, * ), CNORM( * ),
*      $                   WORK( * ), X( LDX, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> STBT03 computes the residual for the solution to a scaled triangular
*> system of equations  A*x = s*b  or  A'*x = s*b  when A is a
*> triangular band matrix. Here A' is the transpose of A, s is a scalar,
*> and x and b are N by NRHS matrices.  The test ratio is the maximum
*> over the number of right hand sides of
*>    norm(s*b - op(A)*x) / ( norm(op(A)) * norm(x) * EPS ),
*> where op(A) denotes A or A' and EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*>          TRANS is CHARACTER*1
*>          Specifies the operation applied to A.
*>          = 'N':  A *x = b  (No transpose)
*>          = 'T':  A'*x = b  (Transpose)
*>          = 'C':  A'*x = b  (Conjugate transpose = Transpose)
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER*1
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals or subdiagonals of the
*>          triangular band matrix A.  KD >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>          The number of right hand sides, i.e., the number of columns
*>          of the matrices X and B.  NRHS >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is REAL array, dimension (LDAB,N)
*>          The upper or lower triangular band matrix A, stored in the
*>          first kd+1 rows of the array. The j-th column of A is stored
*>          in the j-th column of the array AB as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[in] SCALE
*> \verbatim
*>          SCALE is REAL
*>          The scaling factor s used in solving the triangular system.
*> \endverbatim
*>
*> \param[in] CNORM
*> \verbatim
*>          CNORM is REAL array, dimension (N)
*>          The 1-norms of the columns of A, not counting the diagonal.
*> \endverbatim
*>
*> \param[in] TSCAL
*> \verbatim
*>          TSCAL is REAL
*>          The scaling factor used in computing the 1-norms in CNORM.
*>          CNORM actually contains the column norms of TSCAL*A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*>          X is REAL array, dimension (LDX,NRHS)
*>          The computed solution vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*>          LDX is INTEGER
*>          The leading dimension of the array X.  LDX >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is REAL array, dimension (LDB,NRHS)
*>          The right hand side vectors for the system of linear
*>          equations.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is REAL
*>          The maximum over the number of right hand sides of
*>          norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
*  =====================================================================
      SUBROUTINE STBT03( UPLO, TRANS, DIAG, N, KD, NRHS, AB, LDAB,
     $                   SCALE, CNORM, TSCAL, X, LDX, B, LDB, WORK,
     $                   RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, TRANS, UPLO
      INTEGER            KD, LDAB, LDB, LDX, N, NRHS
      REAL               RESID, SCALE, TSCAL
*     ..
*     .. Array Arguments ..
      REAL               AB( LDAB, * ), B( LDB, * ), CNORM( * ),
     $                   WORK( * ), X( LDX, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            IX, J
      REAL               BIGNUM, EPS, ERR, SMLNUM, TNORM, XNORM, XSCAL
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      INTEGER            ISAMAX
      REAL               SLAMCH
      EXTERNAL           LSAME, ISAMAX, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           SAXPY, SCOPY, SSCAL, STBMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0
*
      IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
      EPS = SLAMCH( 'Epsilon' )
      SMLNUM = SLAMCH( 'Safe minimum' )
      BIGNUM = ONE / SMLNUM
*
*     Compute the norm of the triangular matrix A using the column
*     norms already computed by SLATBS.
*
      TNORM = ZERO
      IF( LSAME( DIAG, 'N' ) ) THEN
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 10 J = 1, N
               TNORM = MAX( TNORM, TSCAL*ABS( AB( KD+1, J ) )+
     $                 CNORM( J ) )
   10       CONTINUE
         ELSE
            DO 20 J = 1, N
               TNORM = MAX( TNORM, TSCAL*ABS( AB( 1, J ) )+CNORM( J ) )
   20       CONTINUE
         END IF
      ELSE
         DO 30 J = 1, N
            TNORM = MAX( TNORM, TSCAL+CNORM( J ) )
   30    CONTINUE
      END IF
*
*     Compute the maximum over the number of right hand sides of
*        norm(op(A)*x - s*b) / ( norm(op(A)) * norm(x) * EPS ).
*
      RESID = ZERO
      DO 40 J = 1, NRHS
         CALL SCOPY( N, X( 1, J ), 1, WORK, 1 )
         IX = ISAMAX( N, WORK, 1 )
         XNORM = MAX( ONE, ABS( X( IX, J ) ) )
         XSCAL = ( ONE / XNORM ) / REAL( KD+1 )
         CALL SSCAL( N, XSCAL, WORK, 1 )
         CALL STBMV( UPLO, TRANS, DIAG, N, KD, AB, LDAB, WORK, 1 )
         CALL SAXPY( N, -SCALE*XSCAL, B( 1, J ), 1, WORK, 1 )
         IX = ISAMAX( N, WORK, 1 )
         ERR = TSCAL*ABS( WORK( IX ) )
         IX = ISAMAX( N, X( 1, J ), 1 )
         XNORM = ABS( X( IX, J ) )
         IF( ERR*SMLNUM.LE.XNORM ) THEN
            IF( XNORM.GT.ZERO )
     $         ERR = ERR / XNORM
         ELSE
            IF( ERR.GT.ZERO )
     $         ERR = ONE / EPS
         END IF
         IF( ERR*SMLNUM.LE.TNORM ) THEN
            IF( TNORM.GT.ZERO )
     $         ERR = ERR / TNORM
         ELSE
            IF( ERR.GT.ZERO )
     $         ERR = ONE / EPS
         END IF
         RESID = MAX( RESID, ERR )
   40 CONTINUE
*
      RETURN
*
*     End of STBT03
*
      END
 |