| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 
 | *> \brief \b ZGBT01
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
*                          RESID )
*
*       .. Scalar Arguments ..
*       INTEGER            KL, KU, LDA, LDAFAC, M, N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGBT01 reconstructs a band matrix A from its L*U factorization and
*> computes the residual:
*>    norm(L*U - A) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*>
*> The expression L*U - A is computed one column at a time, so A and
*> AFAC are not modified.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix A.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*>          KL is INTEGER
*>          The number of subdiagonals within the band of A.  KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*>          KU is INTEGER
*>          The number of superdiagonals within the band of A.  KU >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The original matrix A in band storage, stored in rows 1 to
*>          KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER.
*>          The leading dimension of the array A.  LDA >= max(1,KL+KU+1).
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*>          AFAC is COMPLEX*16 array, dimension (LDAFAC,N)
*>          The factored form of the matrix A.  AFAC contains the banded
*>          factors L and U from the L*U factorization, as computed by
*>          ZGBTRF.  U is stored as an upper triangular band matrix with
*>          KL+KU superdiagonals in rows 1 to KL+KU+1, and the
*>          multipliers used during the factorization are stored in rows
*>          KL+KU+2 to 2*KL+KU+1.  See ZGBTRF for further details.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*>          LDAFAC is INTEGER
*>          The leading dimension of the array AFAC.
*>          LDAFAC >= max(1,2*KL*KU+1).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (min(M,N))
*>          The pivot indices from ZGBTRF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (2*KL+KU+1)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          norm(L*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZGBT01( M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK,
     $                   RESID )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            KL, KU, LDA, LDAFAC, M, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      COMPLEX*16         A( LDA, * ), AFAC( LDAFAC, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, I1, I2, IL, IP, IW, J, JL, JU, JUA, KD, LENJ
      DOUBLE PRECISION   ANORM, EPS
      COMPLEX*16         T
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DZASUM
      EXTERNAL           DLAMCH, DZASUM
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZAXPY, ZCOPY
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, DCMPLX, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick exit if M = 0 or N = 0.
*
      RESID = ZERO
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
*
*     Determine EPS and the norm of A.
*
      EPS = DLAMCH( 'Epsilon' )
      KD = KU + 1
      ANORM = ZERO
      DO 10 J = 1, N
         I1 = MAX( KD+1-J, 1 )
         I2 = MIN( KD+M-J, KL+KD )
         IF( I2.GE.I1 )
     $      ANORM = MAX( ANORM, DZASUM( I2-I1+1, A( I1, J ), 1 ) )
   10 CONTINUE
*
*     Compute one column at a time of L*U - A.
*
      KD = KL + KU + 1
      DO 40 J = 1, N
*
*        Copy the J-th column of U to WORK.
*
         JU = MIN( KL+KU, J-1 )
         JL = MIN( KL, M-J )
         LENJ = MIN( M, J ) - J + JU + 1
         IF( LENJ.GT.0 ) THEN
            CALL ZCOPY( LENJ, AFAC( KD-JU, J ), 1, WORK, 1 )
            DO 20 I = LENJ + 1, JU + JL + 1
               WORK( I ) = ZERO
   20       CONTINUE
*
*           Multiply by the unit lower triangular matrix L.  Note that L
*           is stored as a product of transformations and permutations.
*
            DO 30 I = MIN( M-1, J ), J - JU, -1
               IL = MIN( KL, M-I )
               IF( IL.GT.0 ) THEN
                  IW = I - J + JU + 1
                  T = WORK( IW )
                  CALL ZAXPY( IL, T, AFAC( KD+1, I ), 1, WORK( IW+1 ),
     $                        1 )
                  IP = IPIV( I )
                  IF( I.NE.IP ) THEN
                     IP = IP - J + JU + 1
                     WORK( IW ) = WORK( IP )
                     WORK( IP ) = T
                  END IF
               END IF
   30       CONTINUE
*
*           Subtract the corresponding column of A.
*
            JUA = MIN( JU, KU )
            IF( JUA+JL+1.GT.0 )
     $         CALL ZAXPY( JUA+JL+1, -DCMPLX( ONE ), A( KU+1-JUA, J ),
     $                     1, WORK( JU+1-JUA ), 1 )
*
*           Compute the 1-norm of the column.
*
            RESID = MAX( RESID, DZASUM( JU+JL+1, WORK, 1 ) )
         END IF
   40 CONTINUE
*
*     Compute norm(L*U - A) / ( N * norm(A) * EPS )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
      END IF
*
      RETURN
*
*     End of ZGBT01
*
      END
 |