File: test_zcomplexabs.f

package info (click to toggle)
lapack 3.12.1-7
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 78,912 kB
  • sloc: fortran: 622,840; ansic: 217,704; f90: 6,041; makefile: 5,100; sh: 326; python: 270; xml: 182
file content (327 lines) | stat: -rw-r--r-- 10,867 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
*> \brief zabs tests the robustness and precision of the intrinsic ABS for double complex
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \author Weslley S. Pereira, University of Colorado Denver, U.S.
*
*> \verbatim
*>
*> Real values for test:
*> (1) x = 2**m, where m = MINEXPONENT-DIGITS, ..., MINEXPONENT-1. Stop on the first success.
*>     Mind that not all platforms might implement subnormal numbers.
*> (2) x = 2**m, where m = MINEXPONENT, ..., 0. Stop on the first success.
*> (3) x = OV, where OV is the overflow threshold. OV^2 overflows but the norm is OV.
*> (4) x = 2**m, where m = MAXEXPONENT-1, ..., 1. Stop on the first success.
*>
*> Tests:
*> (a) y = x + 0 * I, |y| = x
*> (b) y = 0 + x * I, |y| = x
*> (c) y = (3/4)*x + x * I, |y| = (5/4)*x whenever (3/4)*x and (5/4)*x can be exactly stored
*> (d) y = (1/2)*x + (1/2)*x * I, |y| = (1/2)*x*sqrt(2) whenever (1/2)*x can be exactly stored
*>
*> Special cases:
*>
*> (i) Inf propagation
*>    (1) y = Inf + 0 * I, |y| is Inf.
*>    (2) y =-Inf + 0 * I, |y| is Inf.
*>    (3) y = 0 + Inf * I, |y| is Inf.
*>    (4) y = 0 - Inf * I, |y| is Inf.
*>    (5) y = Inf + Inf * I, |y| is Inf.
*>
*> (n) NaN propagation
*>    (1) y = NaN + 0 * I, |y| is NaN.
*>    (2) y = 0 + NaN * I, |y| is NaN.
*>    (3) y = NaN + NaN * I, |y| is NaN.
*>
*> \endverbatim
*
*> \ingroup auxOTHERauxiliary
*
*  =====================================================================
      program zabs
*
*  -- LAPACK test routine --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..

*     ..
*     .. Local parameters ..
      logical           debug
      parameter       ( debug = .false. )
      integer           N, nNaN, nInf
      parameter       ( N = 4, nNaN = 3, nInf = 5 )
      double precision  threeFourth, fiveFourth, oneHalf
      parameter       ( threeFourth = 3.0d0 / 4,
     $                  fiveFourth = 5.0d0 / 4,
     $                  oneHalf = 1.0d0 / 2 )
*     ..
*     .. Local Variables ..
      integer           i, min, Max, m, subnormalTreatedAs0,
     $                  caseAFails, caseBFails, caseCFails, caseDFails,
     $                  caseEFails, caseFFails, nFailingTests, nTests
      double precision  X( N ), R, answerC,
     $                  answerD, aInf, aNaN, relDiff, b,
     $                  eps, blueMin, blueMax, Xj, stepX(N), limX(N)
      double complex    Y, cInf( nInf ), cNaN( nNaN )
*
*     .. Intrinsic Functions ..
      intrinsic         ABS, DBLE, RADIX, CEILING, TINY, DIGITS, SQRT,
     $                  MAXEXPONENT, MINEXPONENT, FLOOR, HUGE, DCMPLX,
     $                  EPSILON

*
*     .. Initialize error counts ..
      subnormalTreatedAs0 = 0
      caseAFails = 0
      caseBFails = 0
      caseCFails = 0
      caseDFails = 0
      caseEFails = 0
      caseFFails = 0
      nFailingTests = 0
      nTests = 0
*
*     .. Initialize machine constants ..
      min = MINEXPONENT(0.0d0)
      Max = MAXEXPONENT(0.0d0)
      m = DIGITS(0.0d0)
      b = DBLE(RADIX(0.0d0))
      eps = EPSILON(0.0d0)
      blueMin = b**CEILING( (min - 1) * 0.5d0 )
      blueMax = b**FLOOR( (Max - m + 1) * 0.5d0 )
*
*     .. Vector X ..
      X(1) = TINY(0.0d0) * b**( DBLE(1-m) )
      X(2) = TINY(0.0d0)
      X(3) = HUGE(0.0d0)
      X(4) = b**( DBLE(Max-1) )
*
*     .. Then modify X using the step ..
      stepX(1) = 2.0
      stepX(2) = 2.0
      stepX(3) = 0.0
      stepX(4) = 0.5
*
*     .. Up to the value ..
      limX(1) = X(2)
      limX(2) = 1.0
      limX(3) = 0.0
      limX(4) = 2.0
*
*     .. Inf entries ..
      aInf = X(3) * 2
      cInf(1) = DCMPLX( aInf, 0.0d0 )
      cInf(2) = DCMPLX(-aInf, 0.0d0 )
      cInf(3) = DCMPLX( 0.0d0, aInf )
      cInf(4) = DCMPLX( 0.0d0,-aInf )
      cInf(5) = DCMPLX( aInf,  aInf )
*
*     .. NaN entries ..
      aNaN = aInf / aInf
      cNaN(1) = DCMPLX( aNaN, 0.0d0 )
      cNaN(2) = DCMPLX( 0.0d0, aNaN )
      cNaN(3) = DCMPLX( aNaN,  aNaN )

*
*     .. Tests ..
*
      if( debug ) then
        print *, '# X :=', X
        print *, '# Blue min constant :=', blueMin
        print *, '# Blue max constant :=', blueMax
      endif
*
      Xj = X(1)
      if( Xj .eq. 0.0d0 ) then
        subnormalTreatedAs0 = subnormalTreatedAs0 + 1
        if( debug .or. subnormalTreatedAs0 .eq. 1 ) then
            print *, "!! fl( subnormal ) may be 0"
        endif
      else
        do 100 i = 1, N
            Xj = X(i)
            if( Xj .eq. 0.0d0 ) then
                subnormalTreatedAs0 = subnormalTreatedAs0 + 1
                if( debug .or. subnormalTreatedAs0 .eq. 1 ) then
                    print *, "!! fl( subnormal ) may be 0"
                endif
            endif
 100    continue
      endif
*
*     Test (a) y = x + 0 * I, |y| = x
      do 10 i = 1, N
        Xj = X(i)
        if( Xj .eq. 0.0d0 ) then
            subnormalTreatedAs0 = subnormalTreatedAs0 + 1
            if( debug .or. subnormalTreatedAs0 .eq. 1 ) then
                print *, "!! [a] fl( subnormal ) may be 0"
            endif
        else
            do while( Xj .ne. limX(i) )
                nTests = nTests + 1
                Y = DCMPLX( Xj, 0.0d0 )
                R = ABS( Y )
                if( R .ne. Xj ) then
                    caseAFails = caseAFails + 1
                    if( caseAFails .eq. 1 ) then
                        print *, "!! Some ABS(x+0*I) differ from ABS(x)"
                    endif
                    WRITE( 0, FMT = 9999 ) 'a',i, Xj, '(1+0*I)', R, Xj
                endif
                Xj = Xj * stepX(i)
            end do
        endif
  10  continue
*
*     Test (b) y = 0 + x * I, |y| = x
      do 20 i = 1, N
        Xj = X(i)
        if( Xj .eq. 0.0d0 ) then
            subnormalTreatedAs0 = subnormalTreatedAs0 + 1
            if( debug .or. subnormalTreatedAs0 .eq. 1 ) then
                print *, "!! [b] fl( subnormal ) may be 0"
            endif
        else
            do while( Xj .ne. limX(i) )
                nTests = nTests + 1
                Y = DCMPLX( 0.0d0, Xj )
                R = ABS( Y )
                if( R .ne. Xj ) then
                    caseBFails = caseBFails + 1
                    if( caseBFails .eq. 1 ) then
                        print *, "!! Some ABS(0+x*I) differ from ABS(x)"
                    endif
                    WRITE( 0, FMT = 9999 ) 'b',i, Xj, '(0+1*I)', R, Xj
                endif
                Xj = Xj * stepX(i)
            end do
        endif
  20  continue
*
*     Test (c) y = (3/4)*x + x * I, |y| = (5/4)*x
      do 30 i = 1, N
        if( i .eq. 3 ) go to 30
        if( i .eq. 1 ) then
            Xj = 4*X(i)
        else
            Xj = X(i)
        endif
        if( Xj .eq. 0.0d0 ) then
            subnormalTreatedAs0 = subnormalTreatedAs0 + 1
            if( debug .or. subnormalTreatedAs0 .eq. 1 ) then
                print *, "!! [c] fl( subnormal ) may be 0"
            endif
        else
            do while( Xj .ne. limX(i) )
                nTests = nTests + 1
                answerC = fiveFourth * Xj
                Y = DCMPLX( threeFourth * Xj, Xj )
                R = ABS( Y )
                if( R .ne. answerC ) then
                    caseCFails = caseCFails + 1
                    if( caseCFails .eq. 1 ) then
                        print *, 
     $              "!! Some ABS(x*(3/4+I)) differ from (5/4)*ABS(x)"
                    endif
                    WRITE( 0, FMT = 9999 ) 'c',i, Xj, '(3/4+I)', R,
     $                                      answerC
                endif
                Xj = Xj * stepX(i)
            end do
        endif
  30  continue
*
*     Test (d) y = (1/2)*x + (1/2)*x * I, |y| = (1/2)*x*sqrt(2)
      do 40 i = 1, N
        if( i .eq. 1 ) then
            Xj = 2*X(i)
        else
            Xj = X(i)
        endif
        if( Xj .eq. 0.0d0 ) then
            subnormalTreatedAs0 = subnormalTreatedAs0 + 1
            if( debug .or. subnormalTreatedAs0 .eq. 1 ) then
                print *, "!! [d] fl( subnormal ) may be 0"
            endif
        else
            do while( Xj .ne. limX(i) )
                answerD = (oneHalf * Xj) * SQRT(2.0d0)
                if( answerD .eq. 0.0d0 ) then
                    subnormalTreatedAs0 = subnormalTreatedAs0 + 1
                    if( debug .or. subnormalTreatedAs0 .eq. 1 ) then
                        print *, "!! [d] fl( subnormal ) may be 0"
                    endif
                else
                    nTests = nTests + 1
                    Y = DCMPLX( oneHalf * Xj, oneHalf * Xj )
                    R = ABS( Y )
                    relDiff = ABS(R-answerD)/answerD
                    if( relDiff .ge. (0.5*eps) ) then
                        caseDFails = caseDFails + 1
                        if( caseDFails .eq. 1 ) then
                            print *, 
     $                "!! Some ABS(x*(1+I)) differ from sqrt(2)*ABS(x)"
                        endif
                        WRITE( 0, FMT = 9999 ) 'd',i, (oneHalf*Xj),
     $                                  '(1+1*I)', R, answerD
                    endif
                endif
                Xj = Xj * stepX(i)
            end do
        endif 
  40  continue
*
*     Test (e) Infs
      do 50 i = 1, nInf
        nTests = nTests + 1
        Y = cInf(i)
        R = ABS( Y )
        if( .not.(R .gt. HUGE(0.0d0)) ) then
            caseEFails = caseEFails + 1
            WRITE( *, FMT = 9997 ) 'i',i, Y, R
        endif
  50  continue
*
*     Test (f) NaNs
      do 60 i = 1, nNaN
        nTests = nTests + 1
        Y = cNaN(i)
        R = ABS( Y )
        if( R .eq. R ) then
            caseFFails = caseFFails + 1
            WRITE( *, FMT = 9998 ) 'n',i, Y, R
        endif
  60  continue
*
*     If any test fails, displays a message
      nFailingTests = caseAFails + caseBFails + caseCFails + caseDFails
     $                + caseEFails + caseFFails
      if( nFailingTests .gt. 0 ) then
         print *, "# ", nTests-nFailingTests, " tests out of ", nTests,
     $            " pass for ABS(a+b*I),", nFailingTests, " tests fail."
      else
         print *, "# All tests pass for ABS(a+b*I)"
      endif
*
*     If anything was written to stderr, print the message
      if( (caseAFails .gt. 0) .or. (caseBFails .gt. 0) .or.
     $    (caseCFails .gt. 0) .or. (caseDFails .gt. 0) ) then
         print *, "# Please check the failed ABS(a+b*I) in [stderr]"
      endif
*
*     .. Formats ..
 9997 FORMAT( '[',A1,I1, '] ABS(', (ES8.1,SP,ES8.1,"*I"), ' ) = ',
     $        ES8.1, ' differs from Inf' )
*
 9998 FORMAT( '[',A1,I1, '] ABS(', (ES8.1,SP,ES8.1,"*I"), ' ) = ',
     $        ES8.1, ' differs from NaN' )
*
 9999 FORMAT( '[',A1,I1, '] ABS(', ES24.16E3, ' * ', A7, ' ) = ',
     $         ES24.16E3, ' differs from ', ES24.16E3 )
*
*     End of zabs
*
      END