| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 
 | *> \brief \b CPBSTF
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CPBSTF + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cpbstf.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cpbstf.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cpbstf.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          UPLO
*       INTEGER            INFO, KD, LDAB, N
*       ..
*       .. Array Arguments ..
*       COMPLEX            AB( LDAB, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CPBSTF computes a split Cholesky factorization of a complex
*> Hermitian positive definite band matrix A.
*>
*> This routine is designed to be used in conjunction with CHBGST.
*>
*> The factorization has the form  A = S**H*S  where S is a band matrix
*> of the same bandwidth as A and the following structure:
*>
*>   S = ( U    )
*>       ( M  L )
*>
*> where U is upper triangular of order m = (n+kd)/2, and L is lower
*> triangular of order n-m.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          = 'U':  Upper triangle of A is stored;
*>          = 'L':  Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals of the matrix A if UPLO = 'U',
*>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>          On entry, the upper or lower triangle of the Hermitian band
*>          matrix A, stored in the first kd+1 rows of the array.  The
*>          j-th column of A is stored in the j-th column of the array AB
*>          as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*>
*>          On exit, if INFO = 0, the factor S from the split Cholesky
*>          factorization A = S**H*S. See Further Details.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: successful exit
*>          < 0: if INFO = -i, the i-th argument had an illegal value
*>          > 0: if INFO = i, the factorization could not be completed,
*>               because the updated element a(i,i) was negative; the
*>               matrix A is not positive definite.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup pbstf
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The band storage scheme is illustrated by the following example, when
*>  N = 7, KD = 2:
*>
*>  S = ( s11  s12  s13                     )
*>      (      s22  s23  s24                )
*>      (           s33  s34                )
*>      (                s44                )
*>      (           s53  s54  s55           )
*>      (                s64  s65  s66      )
*>      (                     s75  s76  s77 )
*>
*>  If UPLO = 'U', the array AB holds:
*>
*>  on entry:                          on exit:
*>
*>   *    *   a13  a24  a35  a46  a57   *    *   s13  s24  s53**H s64**H s75**H
*>   *   a12  a23  a34  a45  a56  a67   *   s12  s23  s34  s54**H s65**H s76**H
*>  a11  a22  a33  a44  a55  a66  a77  s11  s22  s33  s44  s55    s66    s77
*>
*>  If UPLO = 'L', the array AB holds:
*>
*>  on entry:                          on exit:
*>
*>  a11  a22  a33  a44  a55  a66  a77  s11    s22    s33    s44  s55  s66  s77
*>  a21  a32  a43  a54  a65  a76   *   s12**H s23**H s34**H s54  s65  s76   *
*>  a31  a42  a53  a64  a64   *    *   s13**H s24**H s53    s64  s75   *    *
*>
*>  Array elements marked * are not used by the routine; s12**H denotes
*>  conjg(s12); the diagonal elements of S are real.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CPBSTF( UPLO, N, KD, AB, LDAB, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            INFO, KD, LDAB, N
*     ..
*     .. Array Arguments ..
      COMPLEX            AB( LDAB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ONE, ZERO
      PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            UPPER
      INTEGER            J, KLD, KM, M
      REAL               AJJ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      EXTERNAL           LSAME
*     ..
*     .. External Subroutines ..
      EXTERNAL           CHER, CLACGV, CSSCAL, XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL, SQRT
*     ..
*     .. Executable Statements ..
*
*     Test the input parameters.
*
      INFO = 0
      UPPER = LSAME( UPLO, 'U' )
      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
         INFO = -1
      ELSE IF( N.LT.0 ) THEN
         INFO = -2
      ELSE IF( KD.LT.0 ) THEN
         INFO = -3
      ELSE IF( LDAB.LT.KD+1 ) THEN
         INFO = -5
      END IF
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CPBSTF', -INFO )
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
      KLD = MAX( 1, LDAB-1 )
*
*     Set the splitting point m.
*
      M = ( N+KD ) / 2
*
      IF( UPPER ) THEN
*
*        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
*
         DO 10 J = N, M + 1, -1
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( KD+1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( KD+1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( KD+1, J ) = AJJ
            KM = MIN( J-1, KD )
*
*           Compute elements j-km:j-1 of the j-th column and update the
*           the leading submatrix within the band.
*
            CALL CSSCAL( KM, ONE / AJJ, AB( KD+1-KM, J ), 1 )
            CALL CHER( 'Upper', KM, -ONE, AB( KD+1-KM, J ), 1,
     $                 AB( KD+1, J-KM ), KLD )
   10    CONTINUE
*
*        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
*
         DO 20 J = 1, M
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( KD+1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( KD+1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( KD+1, J ) = AJJ
            KM = MIN( KD, M-J )
*
*           Compute elements j+1:j+km of the j-th row and update the
*           trailing submatrix within the band.
*
            IF( KM.GT.0 ) THEN
               CALL CSSCAL( KM, ONE / AJJ, AB( KD, J+1 ), KLD )
               CALL CLACGV( KM, AB( KD, J+1 ), KLD )
               CALL CHER( 'Upper', KM, -ONE, AB( KD, J+1 ), KLD,
     $                    AB( KD+1, J+1 ), KLD )
               CALL CLACGV( KM, AB( KD, J+1 ), KLD )
            END IF
   20    CONTINUE
      ELSE
*
*        Factorize A(m+1:n,m+1:n) as L**H*L, and update A(1:m,1:m).
*
         DO 30 J = N, M + 1, -1
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( 1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( 1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( 1, J ) = AJJ
            KM = MIN( J-1, KD )
*
*           Compute elements j-km:j-1 of the j-th row and update the
*           trailing submatrix within the band.
*
            CALL CSSCAL( KM, ONE / AJJ, AB( KM+1, J-KM ), KLD )
            CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
            CALL CHER( 'Lower', KM, -ONE, AB( KM+1, J-KM ), KLD,
     $                 AB( 1, J-KM ), KLD )
            CALL CLACGV( KM, AB( KM+1, J-KM ), KLD )
   30    CONTINUE
*
*        Factorize the updated submatrix A(1:m,1:m) as U**H*U.
*
         DO 40 J = 1, M
*
*           Compute s(j,j) and test for non-positive-definiteness.
*
            AJJ = REAL( AB( 1, J ) )
            IF( AJJ.LE.ZERO ) THEN
               AB( 1, J ) = AJJ
               GO TO 50
            END IF
            AJJ = SQRT( AJJ )
            AB( 1, J ) = AJJ
            KM = MIN( KD, M-J )
*
*           Compute elements j+1:j+km of the j-th column and update the
*           trailing submatrix within the band.
*
            IF( KM.GT.0 ) THEN
               CALL CSSCAL( KM, ONE / AJJ, AB( 2, J ), 1 )
               CALL CHER( 'Lower', KM, -ONE, AB( 2, J ), 1,
     $                    AB( 1, J+1 ), KLD )
            END IF
   40    CONTINUE
      END IF
      RETURN
*
   50 CONTINUE
      INFO = J
      RETURN
*
*     End of CPBSTF
*
      END
 |