| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 
 | *> \brief \b CTGSNA
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CTGSNA + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ctgsna.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ctgsna.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ctgsna.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
*                          LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
*                          IWORK, INFO )
*
*       .. Scalar Arguments ..
*       CHARACTER          HOWMNY, JOB
*       INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
*       ..
*       .. Array Arguments ..
*       LOGICAL            SELECT( * )
*       INTEGER            IWORK( * )
*       REAL               DIF( * ), S( * )
*       COMPLEX            A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
*      $                   VR( LDVR, * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CTGSNA estimates reciprocal condition numbers for specified
*> eigenvalues and/or eigenvectors of a matrix pair (A, B).
*>
*> (A, B) must be in generalized Schur canonical form, that is, A and
*> B are both upper triangular.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] JOB
*> \verbatim
*>          JOB is CHARACTER*1
*>          Specifies whether condition numbers are required for
*>          eigenvalues (S) or eigenvectors (DIF):
*>          = 'E': for eigenvalues only (S);
*>          = 'V': for eigenvectors only (DIF);
*>          = 'B': for both eigenvalues and eigenvectors (S and DIF).
*> \endverbatim
*>
*> \param[in] HOWMNY
*> \verbatim
*>          HOWMNY is CHARACTER*1
*>          = 'A': compute condition numbers for all eigenpairs;
*>          = 'S': compute condition numbers for selected eigenpairs
*>                 specified by the array SELECT.
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*>          SELECT is LOGICAL array, dimension (N)
*>          If HOWMNY = 'S', SELECT specifies the eigenpairs for which
*>          condition numbers are required. To select condition numbers
*>          for the corresponding j-th eigenvalue and/or eigenvector,
*>          SELECT(j) must be set to .TRUE..
*>          If HOWMNY = 'A', SELECT is not referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the square matrix pair (A, B). N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The upper triangular matrix A in the pair (A,B).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is COMPLEX array, dimension (LDB,N)
*>          The upper triangular matrix B in the pair (A, B).
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in] VL
*> \verbatim
*>          VL is COMPLEX array, dimension (LDVL,M)
*>          IF JOB = 'E' or 'B', VL must contain left eigenvectors of
*>          (A, B), corresponding to the eigenpairs specified by HOWMNY
*>          and SELECT.  The eigenvectors must be stored in consecutive
*>          columns of VL, as returned by CTGEVC.
*>          If JOB = 'V', VL is not referenced.
*> \endverbatim
*>
*> \param[in] LDVL
*> \verbatim
*>          LDVL is INTEGER
*>          The leading dimension of the array VL. LDVL >= 1; and
*>          If JOB = 'E' or 'B', LDVL >= N.
*> \endverbatim
*>
*> \param[in] VR
*> \verbatim
*>          VR is COMPLEX array, dimension (LDVR,M)
*>          IF JOB = 'E' or 'B', VR must contain right eigenvectors of
*>          (A, B), corresponding to the eigenpairs specified by HOWMNY
*>          and SELECT.  The eigenvectors must be stored in consecutive
*>          columns of VR, as returned by CTGEVC.
*>          If JOB = 'V', VR is not referenced.
*> \endverbatim
*>
*> \param[in] LDVR
*> \verbatim
*>          LDVR is INTEGER
*>          The leading dimension of the array VR. LDVR >= 1;
*>          If JOB = 'E' or 'B', LDVR >= N.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*>          S is REAL array, dimension (MM)
*>          If JOB = 'E' or 'B', the reciprocal condition numbers of the
*>          selected eigenvalues, stored in consecutive elements of the
*>          array.
*>          If JOB = 'V', S is not referenced.
*> \endverbatim
*>
*> \param[out] DIF
*> \verbatim
*>          DIF is REAL array, dimension (MM)
*>          If JOB = 'V' or 'B', the estimated reciprocal condition
*>          numbers of the selected eigenvectors, stored in consecutive
*>          elements of the array.
*>          If the eigenvalues cannot be reordered to compute DIF(j),
*>          DIF(j) is set to 0; this can only occur when the true value
*>          would be very small anyway.
*>          For each eigenvalue/vector specified by SELECT, DIF stores
*>          a Frobenius norm-based estimate of Difl.
*>          If JOB = 'E', DIF is not referenced.
*> \endverbatim
*>
*> \param[in] MM
*> \verbatim
*>          MM is INTEGER
*>          The number of elements in the arrays S and DIF. MM >= M.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*>          M is INTEGER
*>          The number of elements of the arrays S and DIF used to store
*>          the specified condition numbers; for each selected eigenvalue
*>          one element is used. If HOWMNY = 'A', M is set to N.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (MAX(1,LWORK))
*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK. LWORK >= max(1,N).
*>          If JOB = 'V' or 'B', LWORK >= max(1,2*N*N).
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*>          IWORK is INTEGER array, dimension (N+2)
*>          If JOB = 'E', IWORK is not referenced.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>          = 0: Successful exit
*>          < 0: If INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup tgsna
*
*> \par Further Details:
*  =====================
*>
*> \verbatim
*>
*>  The reciprocal of the condition number of the i-th generalized
*>  eigenvalue w = (a, b) is defined as
*>
*>          S(I) = (|v**HAu|**2 + |v**HBu|**2)**(1/2) / (norm(u)*norm(v))
*>
*>  where u and v are the right and left eigenvectors of (A, B)
*>  corresponding to w; |z| denotes the absolute value of the complex
*>  number, and norm(u) denotes the 2-norm of the vector u. The pair
*>  (a, b) corresponds to an eigenvalue w = a/b (= v**HAu/v**HBu) of the
*>  matrix pair (A, B). If both a and b equal zero, then (A,B) is
*>  singular and S(I) = -1 is returned.
*>
*>  An approximate error bound on the chordal distance between the i-th
*>  computed generalized eigenvalue w and the corresponding exact
*>  eigenvalue lambda is
*>
*>          chord(w, lambda) <=   EPS * norm(A, B) / S(I),
*>
*>  where EPS is the machine precision.
*>
*>  The reciprocal of the condition number of the right eigenvector u
*>  and left eigenvector v corresponding to the generalized eigenvalue w
*>  is defined as follows. Suppose
*>
*>                   (A, B) = ( a   *  ) ( b  *  )  1
*>                            ( 0  A22 ),( 0 B22 )  n-1
*>                              1  n-1     1 n-1
*>
*>  Then the reciprocal condition number DIF(I) is
*>
*>          Difl[(a, b), (A22, B22)]  = sigma-min( Zl )
*>
*>  where sigma-min(Zl) denotes the smallest singular value of
*>
*>         Zl = [ kron(a, In-1) -kron(1, A22) ]
*>              [ kron(b, In-1) -kron(1, B22) ].
*>
*>  Here In-1 is the identity matrix of size n-1 and X**H is the conjugate
*>  transpose of X. kron(X, Y) is the Kronecker product between the
*>  matrices X and Y.
*>
*>  We approximate the smallest singular value of Zl with an upper
*>  bound. This is done by CLATDF.
*>
*>  An approximate error bound for a computed eigenvector VL(i) or
*>  VR(i) is given by
*>
*>                      EPS * norm(A, B) / DIF(i).
*>
*>  See ref. [2-3] for more details and further references.
*> \endverbatim
*
*> \par Contributors:
*  ==================
*>
*>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
*>     Umea University, S-901 87 Umea, Sweden.
*
*> \par References:
*  ================
*>
*> \verbatim
*>
*>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
*>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
*>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
*>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
*>
*>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
*>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
*>      Estimation: Theory, Algorithms and Software, Report
*>      UMINF - 94.04, Department of Computing Science, Umea University,
*>      S-901 87 Umea, Sweden, 1994. Also as LAPACK Working Note 87.
*>      To appear in Numerical Algorithms, 1996.
*>
*>  [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software
*>      for Solving the Generalized Sylvester Equation and Estimating the
*>      Separation between Regular Matrix Pairs, Report UMINF - 93.23,
*>      Department of Computing Science, Umea University, S-901 87 Umea,
*>      Sweden, December 1993, Revised April 1994, Also as LAPACK Working
*>      Note 75.
*>      To appear in ACM Trans. on Math. Software, Vol 22, No 1, 1996.
*> \endverbatim
*>
*  =====================================================================
      SUBROUTINE CTGSNA( JOB, HOWMNY, SELECT, N, A, LDA, B, LDB, VL,
     $                   LDVL, VR, LDVR, S, DIF, MM, M, WORK, LWORK,
     $                   IWORK, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          HOWMNY, JOB
      INTEGER            INFO, LDA, LDB, LDVL, LDVR, LWORK, M, MM, N
*     ..
*     .. Array Arguments ..
      LOGICAL            SELECT( * )
      INTEGER            IWORK( * )
      REAL               DIF( * ), S( * )
      COMPLEX            A( LDA, * ), B( LDB, * ), VL( LDVL, * ),
     $                   VR( LDVR, * ), WORK( * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      INTEGER            IDIFJB
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0, IDIFJB = 3 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LQUERY, SOMCON, WANTBH, WANTDF, WANTS
      INTEGER            I, IERR, IFST, ILST, K, KS, LWMIN, N1, N2
      REAL               BIGNUM, COND, EPS, LNRM, RNRM, SCALE, SMLNUM
      COMPLEX            YHAX, YHBX
*     ..
*     .. Local Arrays ..
      COMPLEX            DUMMY( 1 ), DUMMY1( 1 )
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      REAL               SCNRM2, SLAMCH, SLAPY2,
     $                   SROUNDUP_LWORK
      COMPLEX            CDOTC
      EXTERNAL           LSAME, SCNRM2, SLAMCH,
     $                   SLAPY2, SROUNDUP_LWORK,
     $                   CDOTC
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMV, CLACPY, CTGEXC, CTGSYL,
     $                   XERBLA
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, CMPLX, MAX
*     ..
*     .. Executable Statements ..
*
*     Decode and test the input parameters
*
      WANTBH = LSAME( JOB, 'B' )
      WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
      WANTDF = LSAME( JOB, 'V' ) .OR. WANTBH
*
      SOMCON = LSAME( HOWMNY, 'S' )
*
      INFO = 0
      LQUERY = ( LWORK.EQ.-1 )
*
      IF( .NOT.WANTS .AND. .NOT.WANTDF ) THEN
         INFO = -1
      ELSE IF( .NOT.LSAME( HOWMNY, 'A' ) .AND. .NOT.SOMCON ) THEN
         INFO = -2
      ELSE IF( N.LT.0 ) THEN
         INFO = -4
      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
         INFO = -6
      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
         INFO = -8
      ELSE IF( WANTS .AND. LDVL.LT.N ) THEN
         INFO = -10
      ELSE IF( WANTS .AND. LDVR.LT.N ) THEN
         INFO = -12
      ELSE
*
*        Set M to the number of eigenpairs for which condition numbers
*        are required, and test MM.
*
         IF( SOMCON ) THEN
            M = 0
            DO 10 K = 1, N
               IF( SELECT( K ) )
     $            M = M + 1
   10       CONTINUE
         ELSE
            M = N
         END IF
*
         IF( N.EQ.0 ) THEN
            LWMIN = 1
         ELSE IF( LSAME( JOB, 'V' ) .OR. LSAME( JOB, 'B' ) ) THEN
            LWMIN = 2*N*N
         ELSE
            LWMIN = N
         END IF
         WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
*
         IF( MM.LT.M ) THEN
            INFO = -15
         ELSE IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
            INFO = -18
         END IF
      END IF
*
      IF( INFO.NE.0 ) THEN
         CALL XERBLA( 'CTGSNA', -INFO )
         RETURN
      ELSE IF( LQUERY ) THEN
         RETURN
      END IF
*
*     Quick return if possible
*
      IF( N.EQ.0 )
     $   RETURN
*
*     Get machine constants
*
      EPS = SLAMCH( 'P' )
      SMLNUM = SLAMCH( 'S' ) / EPS
      BIGNUM = ONE / SMLNUM
      KS = 0
      DO 20 K = 1, N
*
*        Determine whether condition numbers are required for the k-th
*        eigenpair.
*
         IF( SOMCON ) THEN
            IF( .NOT.SELECT( K ) )
     $         GO TO 20
         END IF
*
         KS = KS + 1
*
         IF( WANTS ) THEN
*
*           Compute the reciprocal condition number of the k-th
*           eigenvalue.
*
            RNRM = SCNRM2( N, VR( 1, KS ), 1 )
            LNRM = SCNRM2( N, VL( 1, KS ), 1 )
            CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), A, LDA,
     $                  VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
            YHAX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
            CALL CGEMV( 'N', N, N, CMPLX( ONE, ZERO ), B, LDB,
     $                  VR( 1, KS ), 1, CMPLX( ZERO, ZERO ), WORK, 1 )
            YHBX = CDOTC( N, WORK, 1, VL( 1, KS ), 1 )
            COND = SLAPY2( ABS( YHAX ), ABS( YHBX ) )
            IF( COND.EQ.ZERO ) THEN
               S( KS ) = -ONE
            ELSE
               S( KS ) = COND / ( RNRM*LNRM )
            END IF
         END IF
*
         IF( WANTDF ) THEN
            IF( N.EQ.1 ) THEN
               DIF( KS ) = SLAPY2( ABS( A( 1, 1 ) ), ABS( B( 1,
     $              1 ) ) )
            ELSE
*
*              Estimate the reciprocal condition number of the k-th
*              eigenvectors.
*
*              Copy the matrix (A, B) to the array WORK and move the
*              (k,k)th pair to the (1,1) position.
*
               CALL CLACPY( 'Full', N, N, A, LDA, WORK, N )
               CALL CLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
               IFST = K
               ILST = 1
*
               CALL CTGEXC( .FALSE., .FALSE., N, WORK, N,
     $                      WORK( N*N+1 ),
     $                      N, DUMMY, 1, DUMMY1, 1, IFST, ILST, IERR )
*
               IF( IERR.GT.0 ) THEN
*
*                 Ill-conditioned problem - swap rejected.
*
                  DIF( KS ) = ZERO
               ELSE
*
*                 Reordering successful, solve generalized Sylvester
*                 equation for R and L,
*                            A22 * R - L * A11 = A12
*                            B22 * R - L * B11 = B12,
*                 and compute estimate of Difl[(A11,B11), (A22, B22)].
*
                  N1 = 1
                  N2 = N - N1
                  I = N*N + 1
                  CALL CTGSYL( 'N', IDIFJB, N2, N1,
     $                         WORK( N*N1+N1+1 ),
     $                         N, WORK, N, WORK( N1+1 ), N,
     $                         WORK( N*N1+N1+I ), N, WORK( I ), N,
     $                         WORK( N1+I ), N, SCALE, DIF( KS ), DUMMY,
     $                         1, IWORK, IERR )
               END IF
            END IF
         END IF
*
   20 CONTINUE
      WORK( 1 ) = SROUNDUP_LWORK(LWMIN)
      RETURN
*
*     End of CTGSNA
*
      END
 |