| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 
 | *> \brief \b DLA_GERFSX_EXTENDED improves the computed solution to a system of linear equations for general matrices by performing extra-precise iterative refinement and provides error bounds and backward error estimates for the solution.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLA_GERFSX_EXTENDED + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dla_gerfsx_extended.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS, A,
*                                       LDA, AF, LDAF, IPIV, COLEQU, C, B,
*                                       LDB, Y, LDY, BERR_OUT, N_NORMS,
*                                       ERRS_N, ERRS_C, RES, AYB, DY,
*                                       Y_TAIL, RCOND, ITHRESH, RTHRESH,
*                                       DZ_UB, IGNORE_CWISE, INFO )
*
*       .. Scalar Arguments ..
*       INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
*      $                   TRANS_TYPE, N_NORMS, ITHRESH
*       LOGICAL            COLEQU, IGNORE_CWISE
*       DOUBLE PRECISION   RTHRESH, DZ_UB
*       ..
*       .. Array Arguments ..
*       INTEGER            IPIV( * )
*       DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
*      $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
*       DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
*      $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>
*> DLA_GERFSX_EXTENDED improves the computed solution to a system of
*> linear equations by performing extra-precise iterative refinement
*> and provides error bounds and backward error estimates for the solution.
*> This subroutine is called by DGERFSX to perform iterative refinement.
*> In addition to normwise error bound, the code provides maximum
*> componentwise error bound if possible. See comments for ERRS_N
*> and ERRS_C for details of the error bounds. Note that this
*> subroutine is only responsible for setting the second fields of
*> ERRS_N and ERRS_C.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] PREC_TYPE
*> \verbatim
*>          PREC_TYPE is INTEGER
*>     Specifies the intermediate precision to be used in refinement.
*>     The value is defined by ILAPREC(P) where P is a CHARACTER and P
*>          = 'S':  Single
*>          = 'D':  Double
*>          = 'I':  Indigenous
*>          = 'X' or 'E':  Extra
*> \endverbatim
*>
*> \param[in] TRANS_TYPE
*> \verbatim
*>          TRANS_TYPE is INTEGER
*>     Specifies the transposition operation on A.
*>     The value is defined by ILATRANS(T) where T is a CHARACTER and T
*>          = 'N':  No transpose
*>          = 'T':  Transpose
*>          = 'C':  Conjugate transpose
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>     The number of linear equations, i.e., the order of the
*>     matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*>          NRHS is INTEGER
*>     The number of right-hand-sides, i.e., the number of columns of the
*>     matrix B.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>     On entry, the N-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>     The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*>          AF is DOUBLE PRECISION array, dimension (LDAF,N)
*>     The factors L and U from the factorization
*>     A = P*L*U as computed by DGETRF.
*> \endverbatim
*>
*> \param[in] LDAF
*> \verbatim
*>          LDAF is INTEGER
*>     The leading dimension of the array AF.  LDAF >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*>          IPIV is INTEGER array, dimension (N)
*>     The pivot indices from the factorization A = P*L*U
*>     as computed by DGETRF; row i of the matrix was interchanged
*>     with row IPIV(i).
*> \endverbatim
*>
*> \param[in] COLEQU
*> \verbatim
*>          COLEQU is LOGICAL
*>     If .TRUE. then column equilibration was done to A before calling
*>     this routine. This is needed to compute the solution and error
*>     bounds correctly.
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension (N)
*>     The column scale factors for A. If COLEQU = .FALSE., C
*>     is not accessed. If C is input, each element of C should be a power
*>     of the radix to ensure a reliable solution and error estimates.
*>     Scaling by powers of the radix does not cause rounding errors unless
*>     the result underflows or overflows. Rounding errors during scaling
*>     lead to refining with a matrix that is not equivalent to the
*>     input matrix, producing error estimates that may not be
*>     reliable.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
*>     The right-hand-side matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>     The leading dimension of the array B.  LDB >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] Y
*> \verbatim
*>          Y is DOUBLE PRECISION array, dimension (LDY,NRHS)
*>     On entry, the solution matrix X, as computed by DGETRS.
*>     On exit, the improved solution matrix Y.
*> \endverbatim
*>
*> \param[in] LDY
*> \verbatim
*>          LDY is INTEGER
*>     The leading dimension of the array Y.  LDY >= max(1,N).
*> \endverbatim
*>
*> \param[out] BERR_OUT
*> \verbatim
*>          BERR_OUT is DOUBLE PRECISION array, dimension (NRHS)
*>     On exit, BERR_OUT(j) contains the componentwise relative backward
*>     error for right-hand-side j from the formula
*>         max(i) ( abs(RES(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
*>     where abs(Z) is the componentwise absolute value of the matrix
*>     or vector Z. This is computed by DLA_LIN_BERR.
*> \endverbatim
*>
*> \param[in] N_NORMS
*> \verbatim
*>          N_NORMS is INTEGER
*>     Determines which error bounds to return (see ERRS_N
*>     and ERRS_C).
*>     If N_NORMS >= 1 return normwise error bounds.
*>     If N_NORMS >= 2 return componentwise error bounds.
*> \endverbatim
*>
*> \param[in,out] ERRS_N
*> \verbatim
*>          ERRS_N is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
*>     For each right-hand side, this array contains information about
*>     various error bounds and condition numbers corresponding to the
*>     normwise relative error, which is defined as follows:
*>
*>     Normwise relative error in the ith solution vector:
*>             max_j (abs(XTRUE(j,i) - X(j,i)))
*>            ------------------------------
*>                  max_j abs(X(j,i))
*>
*>     The array is indexed by the type of error information as described
*>     below. There currently are up to three pieces of information
*>     returned.
*>
*>     The first index in ERRS_N(i,:) corresponds to the ith
*>     right-hand side.
*>
*>     The second index in ERRS_N(:,err) contains the following
*>     three fields:
*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
*>              reciprocal condition number is less than the threshold
*>              sqrt(n) * slamch('Epsilon').
*>
*>     err = 2 "Guaranteed" error bound: The estimated forward error,
*>              almost certainly within a factor of 10 of the true error
*>              so long as the next entry is greater than the threshold
*>              sqrt(n) * slamch('Epsilon'). This error bound should only
*>              be trusted if the previous boolean is true.
*>
*>     err = 3  Reciprocal condition number: Estimated normwise
*>              reciprocal condition number.  Compared with the threshold
*>              sqrt(n) * slamch('Epsilon') to determine if the error
*>              estimate is "guaranteed". These reciprocal condition
*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*>              appropriately scaled matrix Z.
*>              Let Z = S*A, where S scales each row by a power of the
*>              radix so all absolute row sums of Z are approximately 1.
*>
*>     This subroutine is only responsible for setting the second field
*>     above.
*>     See Lapack Working Note 165 for further details and extra
*>     cautions.
*> \endverbatim
*>
*> \param[in,out] ERRS_C
*> \verbatim
*>          ERRS_C is DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS)
*>     For each right-hand side, this array contains information about
*>     various error bounds and condition numbers corresponding to the
*>     componentwise relative error, which is defined as follows:
*>
*>     Componentwise relative error in the ith solution vector:
*>                    abs(XTRUE(j,i) - X(j,i))
*>             max_j ----------------------
*>                         abs(X(j,i))
*>
*>     The array is indexed by the right-hand side i (on which the
*>     componentwise relative error depends), and the type of error
*>     information as described below. There currently are up to three
*>     pieces of information returned for each right-hand side. If
*>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
*>     ERRS_C is not accessed.  If N_ERR_BNDS < 3, then at most
*>     the first (:,N_ERR_BNDS) entries are returned.
*>
*>     The first index in ERRS_C(i,:) corresponds to the ith
*>     right-hand side.
*>
*>     The second index in ERRS_C(:,err) contains the following
*>     three fields:
*>     err = 1 "Trust/don't trust" boolean. Trust the answer if the
*>              reciprocal condition number is less than the threshold
*>              sqrt(n) * slamch('Epsilon').
*>
*>     err = 2 "Guaranteed" error bound: The estimated forward error,
*>              almost certainly within a factor of 10 of the true error
*>              so long as the next entry is greater than the threshold
*>              sqrt(n) * slamch('Epsilon'). This error bound should only
*>              be trusted if the previous boolean is true.
*>
*>     err = 3  Reciprocal condition number: Estimated componentwise
*>              reciprocal condition number.  Compared with the threshold
*>              sqrt(n) * slamch('Epsilon') to determine if the error
*>              estimate is "guaranteed". These reciprocal condition
*>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
*>              appropriately scaled matrix Z.
*>              Let Z = S*(A*diag(x)), where x is the solution for the
*>              current right-hand side and S scales each row of
*>              A*diag(x) by a power of the radix so all absolute row
*>              sums of Z are approximately 1.
*>
*>     This subroutine is only responsible for setting the second field
*>     above.
*>     See Lapack Working Note 165 for further details and extra
*>     cautions.
*> \endverbatim
*>
*> \param[in] RES
*> \verbatim
*>          RES is DOUBLE PRECISION array, dimension (N)
*>     Workspace to hold the intermediate residual.
*> \endverbatim
*>
*> \param[in] AYB
*> \verbatim
*>          AYB is DOUBLE PRECISION array, dimension (N)
*>     Workspace. This can be the same workspace passed for Y_TAIL.
*> \endverbatim
*>
*> \param[in] DY
*> \verbatim
*>          DY is DOUBLE PRECISION array, dimension (N)
*>     Workspace to hold the intermediate solution.
*> \endverbatim
*>
*> \param[in] Y_TAIL
*> \verbatim
*>          Y_TAIL is DOUBLE PRECISION array, dimension (N)
*>     Workspace to hold the trailing bits of the intermediate solution.
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>     Reciprocal scaled condition number.  This is an estimate of the
*>     reciprocal Skeel condition number of the matrix A after
*>     equilibration (if done).  If this is less than the machine
*>     precision (in particular, if it is zero), the matrix is singular
*>     to working precision.  Note that the error may still be small even
*>     if this number is very small and the matrix appears ill-
*>     conditioned.
*> \endverbatim
*>
*> \param[in] ITHRESH
*> \verbatim
*>          ITHRESH is INTEGER
*>     The maximum number of residual computations allowed for
*>     refinement. The default is 10. For 'aggressive' set to 100 to
*>     permit convergence using approximate factorizations or
*>     factorizations other than LU. If the factorization uses a
*>     technique other than Gaussian elimination, the guarantees in
*>     ERRS_N and ERRS_C may no longer be trustworthy.
*> \endverbatim
*>
*> \param[in] RTHRESH
*> \verbatim
*>          RTHRESH is DOUBLE PRECISION
*>     Determines when to stop refinement if the error estimate stops
*>     decreasing. Refinement will stop when the next solution no longer
*>     satisfies norm(dx_{i+1}) < RTHRESH * norm(dx_i) where norm(Z) is
*>     the infinity norm of Z. RTHRESH satisfies 0 < RTHRESH <= 1. The
*>     default value is 0.5. For 'aggressive' set to 0.9 to permit
*>     convergence on extremely ill-conditioned matrices. See LAWN 165
*>     for more details.
*> \endverbatim
*>
*> \param[in] DZ_UB
*> \verbatim
*>          DZ_UB is DOUBLE PRECISION
*>     Determines when to start considering componentwise convergence.
*>     Componentwise convergence is only considered after each component
*>     of the solution Y is stable, which we define as the relative
*>     change in each component being less than DZ_UB. The default value
*>     is 0.25, requiring the first bit to be stable. See LAWN 165 for
*>     more details.
*> \endverbatim
*>
*> \param[in] IGNORE_CWISE
*> \verbatim
*>          IGNORE_CWISE is LOGICAL
*>     If .TRUE. then ignore componentwise convergence. Default value
*>     is .FALSE..
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*>          INFO is INTEGER
*>       = 0:  Successful exit.
*>       < 0:  if INFO = -i, the ith argument to DGETRS had an illegal
*>             value
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup la_gerfsx_extended
*
*  =====================================================================
      SUBROUTINE DLA_GERFSX_EXTENDED( PREC_TYPE, TRANS_TYPE, N, NRHS,
     $                                A,
     $                                LDA, AF, LDAF, IPIV, COLEQU, C, B,
     $                                LDB, Y, LDY, BERR_OUT, N_NORMS,
     $                                ERRS_N, ERRS_C, RES, AYB, DY,
     $                                Y_TAIL, RCOND, ITHRESH, RTHRESH,
     $                                DZ_UB, IGNORE_CWISE, INFO )
*
*  -- LAPACK computational routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            INFO, LDA, LDAF, LDB, LDY, N, NRHS, PREC_TYPE,
     $                   TRANS_TYPE, N_NORMS, ITHRESH
      LOGICAL            COLEQU, IGNORE_CWISE
      DOUBLE PRECISION   RTHRESH, DZ_UB
*     ..
*     .. Array Arguments ..
      INTEGER            IPIV( * )
      DOUBLE PRECISION   A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
     $                   Y( LDY, * ), RES( * ), DY( * ), Y_TAIL( * )
      DOUBLE PRECISION   C( * ), AYB( * ), RCOND, BERR_OUT( * ),
     $                   ERRS_N( NRHS, * ), ERRS_C( NRHS, * )
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      CHARACTER          TRANS
      INTEGER            CNT, I, J, X_STATE, Z_STATE, Y_PREC_STATE
      DOUBLE PRECISION   YK, DYK, YMIN, NORMY, NORMX, NORMDX, DXRAT,
     $                   DZRAT, PREVNORMDX, PREV_DZ_Z, DXRATMAX,
     $                   DZRATMAX, DX_X, DZ_Z, FINAL_DX_X, FINAL_DZ_Z,
     $                   EPS, HUGEVAL, INCR_THRESH
      LOGICAL            INCR_PREC
*     ..
*     .. Parameters ..
      INTEGER            UNSTABLE_STATE, WORKING_STATE, CONV_STATE,
     $                   NOPROG_STATE, BASE_RESIDUAL, EXTRA_RESIDUAL,
     $                   EXTRA_Y
      PARAMETER          ( UNSTABLE_STATE = 0, WORKING_STATE = 1,
     $                   CONV_STATE = 2, NOPROG_STATE = 3 )
      PARAMETER          ( BASE_RESIDUAL = 0, EXTRA_RESIDUAL = 1,
     $                   EXTRA_Y = 2 )
      INTEGER            FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
      INTEGER            RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
      INTEGER            CMP_ERR_I, PIV_GROWTH_I
      PARAMETER          ( FINAL_NRM_ERR_I = 1, FINAL_CMP_ERR_I = 2,
     $                   BERR_I = 3 )
      PARAMETER          ( RCOND_I = 4, NRM_RCOND_I = 5, NRM_ERR_I = 6 )
      PARAMETER          ( CMP_RCOND_I = 7, CMP_ERR_I = 8,
     $                   PIV_GROWTH_I = 9 )
      INTEGER            LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
     $                   LA_LINRX_CWISE_I
      PARAMETER          ( LA_LINRX_ITREF_I = 1,
     $                   LA_LINRX_ITHRESH_I = 2 )
      PARAMETER          ( LA_LINRX_CWISE_I = 3 )
      INTEGER            LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
     $                   LA_LINRX_RCOND_I
      PARAMETER          ( LA_LINRX_TRUST_I = 1, LA_LINRX_ERR_I = 2 )
      PARAMETER          ( LA_LINRX_RCOND_I = 3 )
*     ..
*     .. External Subroutines ..
      EXTERNAL           DAXPY, DCOPY, DGETRS, DGEMV,
     $                   BLAS_DGEMV_X,
     $                   BLAS_DGEMV2_X, DLA_GEAMV, DLA_WWADDW, DLAMCH,
     $                   CHLA_TRANSTYPE, DLA_LIN_BERR
      DOUBLE PRECISION   DLAMCH
      CHARACTER          CHLA_TRANSTYPE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, MAX, MIN
*     ..
*     .. Executable Statements ..
*
      IF ( INFO.NE.0 ) RETURN
      TRANS = CHLA_TRANSTYPE(TRANS_TYPE)
      EPS = DLAMCH( 'Epsilon' )
      HUGEVAL = DLAMCH( 'Overflow' )
*     Force HUGEVAL to Inf
      HUGEVAL = HUGEVAL * HUGEVAL
*     Using HUGEVAL may lead to spurious underflows.
      INCR_THRESH = DBLE( N ) * EPS
*
      DO J = 1, NRHS
         Y_PREC_STATE = EXTRA_RESIDUAL
         IF ( Y_PREC_STATE .EQ. EXTRA_Y ) THEN
            DO I = 1, N
               Y_TAIL( I ) = 0.0D+0
            END DO
         END IF
         DXRAT = 0.0D+0
         DXRATMAX = 0.0D+0
         DZRAT = 0.0D+0
         DZRATMAX = 0.0D+0
         FINAL_DX_X = HUGEVAL
         FINAL_DZ_Z = HUGEVAL
         PREVNORMDX = HUGEVAL
         PREV_DZ_Z = HUGEVAL
         DZ_Z = HUGEVAL
         DX_X = HUGEVAL
         X_STATE = WORKING_STATE
         Z_STATE = UNSTABLE_STATE
         INCR_PREC = .FALSE.
         DO CNT = 1, ITHRESH
*
*         Compute residual RES = B_s - op(A_s) * Y,
*             op(A) = A, A**T, or A**H depending on TRANS (and type).
*
            CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
            IF ( Y_PREC_STATE .EQ. BASE_RESIDUAL ) THEN
               CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y( 1, J ),
     $                     1,
     $              1.0D+0, RES, 1 )
            ELSE IF ( Y_PREC_STATE .EQ. EXTRA_RESIDUAL ) THEN
               CALL BLAS_DGEMV_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
     $              Y( 1, J ), 1, 1.0D+0, RES, 1, PREC_TYPE )
            ELSE
               CALL BLAS_DGEMV2_X( TRANS_TYPE, N, N, -1.0D+0, A, LDA,
     $              Y( 1, J ), Y_TAIL, 1, 1.0D+0, RES, 1, PREC_TYPE )
            END IF
!        XXX: RES is no longer needed.
            CALL DCOPY( N, RES, 1, DY, 1 )
            CALL DGETRS( TRANS, N, 1, AF, LDAF, IPIV, DY, N, INFO )
*
*         Calculate relative changes DX_X, DZ_Z and ratios DXRAT, DZRAT.
*
            NORMX = 0.0D+0
            NORMY = 0.0D+0
            NORMDX = 0.0D+0
            DZ_Z = 0.0D+0
            YMIN = HUGEVAL
*
            DO I = 1, N
               YK = ABS( Y( I, J ) )
               DYK = ABS( DY( I ) )
               IF ( YK .NE. 0.0D+0 ) THEN
                  DZ_Z = MAX( DZ_Z, DYK / YK )
               ELSE IF ( DYK .NE. 0.0D+0 ) THEN
                  DZ_Z = HUGEVAL
               END IF
               YMIN = MIN( YMIN, YK )
               NORMY = MAX( NORMY, YK )
               IF ( COLEQU ) THEN
                  NORMX = MAX( NORMX, YK * C( I ) )
                  NORMDX = MAX( NORMDX, DYK * C( I ) )
               ELSE
                  NORMX = NORMY
                  NORMDX = MAX( NORMDX, DYK )
               END IF
            END DO
            IF ( NORMX .NE. 0.0D+0 ) THEN
               DX_X = NORMDX / NORMX
            ELSE IF ( NORMDX .EQ. 0.0D+0 ) THEN
               DX_X = 0.0D+0
            ELSE
               DX_X = HUGEVAL
            END IF
            DXRAT = NORMDX / PREVNORMDX
            DZRAT = DZ_Z / PREV_DZ_Z
*
*         Check termination criteria
*
            IF (.NOT.IGNORE_CWISE
     $           .AND. YMIN*RCOND .LT. INCR_THRESH*NORMY
     $           .AND. Y_PREC_STATE .LT. EXTRA_Y)
     $           INCR_PREC = .TRUE.
            IF ( X_STATE .EQ. NOPROG_STATE .AND. DXRAT .LE. RTHRESH )
     $           X_STATE = WORKING_STATE
            IF ( X_STATE .EQ. WORKING_STATE ) THEN
               IF ( DX_X .LE. EPS ) THEN
                  X_STATE = CONV_STATE
               ELSE IF ( DXRAT .GT. RTHRESH ) THEN
                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                     INCR_PREC = .TRUE.
                  ELSE
                     X_STATE = NOPROG_STATE
                  END IF
               ELSE
                  IF ( DXRAT .GT. DXRATMAX ) DXRATMAX = DXRAT
               END IF
               IF ( X_STATE .GT. WORKING_STATE ) FINAL_DX_X = DX_X
            END IF
            IF ( Z_STATE .EQ. UNSTABLE_STATE .AND. DZ_Z .LE. DZ_UB )
     $           Z_STATE = WORKING_STATE
            IF ( Z_STATE .EQ. NOPROG_STATE .AND. DZRAT .LE. RTHRESH )
     $           Z_STATE = WORKING_STATE
            IF ( Z_STATE .EQ. WORKING_STATE ) THEN
               IF ( DZ_Z .LE. EPS ) THEN
                  Z_STATE = CONV_STATE
               ELSE IF ( DZ_Z .GT. DZ_UB ) THEN
                  Z_STATE = UNSTABLE_STATE
                  DZRATMAX = 0.0D+0
                  FINAL_DZ_Z = HUGEVAL
               ELSE IF ( DZRAT .GT. RTHRESH ) THEN
                  IF ( Y_PREC_STATE .NE. EXTRA_Y ) THEN
                     INCR_PREC = .TRUE.
                  ELSE
                     Z_STATE = NOPROG_STATE
                  END IF
               ELSE
                  IF ( DZRAT .GT. DZRATMAX ) DZRATMAX = DZRAT
               END IF
               IF ( Z_STATE .GT. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
            END IF
*
*           Exit if both normwise and componentwise stopped working,
*           but if componentwise is unstable, let it go at least two
*           iterations.
*
            IF ( X_STATE.NE.WORKING_STATE ) THEN
               IF ( IGNORE_CWISE) GOTO 666
               IF ( Z_STATE.EQ.NOPROG_STATE .OR. Z_STATE.EQ.CONV_STATE )
     $              GOTO 666
               IF ( Z_STATE.EQ.UNSTABLE_STATE .AND. CNT.GT.1 ) GOTO 666
            END IF
            IF ( INCR_PREC ) THEN
               INCR_PREC = .FALSE.
               Y_PREC_STATE = Y_PREC_STATE + 1
               DO I = 1, N
                  Y_TAIL( I ) = 0.0D+0
               END DO
            END IF
            PREVNORMDX = NORMDX
            PREV_DZ_Z = DZ_Z
*
*           Update solution.
*
            IF ( Y_PREC_STATE .LT. EXTRA_Y ) THEN
               CALL DAXPY( N, 1.0D+0, DY, 1, Y( 1, J ), 1 )
            ELSE
               CALL DLA_WWADDW( N, Y( 1, J ), Y_TAIL, DY )
            END IF
         END DO
*        Target of "IF (Z_STOP .AND. X_STOP)".  Sun's f77 won't EXIT.
 666     CONTINUE
*
*     Set final_* when cnt hits ithresh.
*
         IF ( X_STATE .EQ. WORKING_STATE ) FINAL_DX_X = DX_X
         IF ( Z_STATE .EQ. WORKING_STATE ) FINAL_DZ_Z = DZ_Z
*
*     Compute error bounds
*
         IF (N_NORMS .GE. 1) THEN
            ERRS_N( J, LA_LINRX_ERR_I ) = FINAL_DX_X / (1 - DXRATMAX)
         END IF
         IF ( N_NORMS .GE. 2 ) THEN
            ERRS_C( J, LA_LINRX_ERR_I ) = FINAL_DZ_Z / (1 - DZRATMAX)
         END IF
*
*     Compute componentwise relative backward error from formula
*         max(i) ( abs(R(i)) / ( abs(op(A_s))*abs(Y) + abs(B_s) )(i) )
*     where abs(Z) is the componentwise absolute value of the matrix
*     or vector Z.
*
*         Compute residual RES = B_s - op(A_s) * Y,
*             op(A) = A, A**T, or A**H depending on TRANS (and type).
*
         CALL DCOPY( N, B( 1, J ), 1, RES, 1 )
         CALL DGEMV( TRANS, N, N, -1.0D+0, A, LDA, Y(1,J), 1, 1.0D+0,
     $     RES, 1 )
         DO I = 1, N
            AYB( I ) = ABS( B( I, J ) )
         END DO
*
*     Compute abs(op(A_s))*abs(Y) + abs(B_s).
*
         CALL DLA_GEAMV ( TRANS_TYPE, N, N, 1.0D+0,
     $        A, LDA, Y(1, J), 1, 1.0D+0, AYB, 1 )
         CALL DLA_LIN_BERR ( N, N, 1, RES, AYB, BERR_OUT( J ) )
*
*     End of loop for each RHS.
*
      END DO
*
      RETURN
*
*     End of DLA_GERFSX_EXTENDED
*
      END
 |