| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 
 | *> \brief \b DLANSP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a symmetric matrix supplied in packed form.
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DLANSP + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlansp.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlansp.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlansp.f">
*> [TXT]</a>
*> \endhtmlonly
*
*  Definition:
*  ===========
*
*       DOUBLE PRECISION FUNCTION DLANSP( NORM, UPLO, N, AP, WORK )
*
*       .. Scalar Arguments ..
*       CHARACTER          NORM, UPLO
*       INTEGER            N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   AP( * ), WORK( * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DLANSP  returns the value of the one norm,  or the Frobenius norm, or
*> the  infinity norm,  or the  element of  largest absolute value  of a
*> real symmetric matrix A,  supplied in packed form.
*> \endverbatim
*>
*> \return DLANSP
*> \verbatim
*>
*>    DLANSP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
*>             (
*>             ( norm1(A),         NORM = '1', 'O' or 'o'
*>             (
*>             ( normI(A),         NORM = 'I' or 'i'
*>             (
*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
*>
*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] NORM
*> \verbatim
*>          NORM is CHARACTER*1
*>          Specifies the value to be returned in DLANSP as described
*>          above.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER*1
*>          Specifies whether the upper or lower triangular part of the
*>          symmetric matrix A is supplied.
*>          = 'U':  Upper triangular part of A is supplied
*>          = 'L':  Lower triangular part of A is supplied
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.  When N = 0, DLANSP is
*>          set to zero.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*>          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*>          The upper or lower triangle of the symmetric matrix A, packed
*>          columnwise in a linear array.  The j-th column of A is stored
*>          in the array AP as follows:
*>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
*>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
*>          WORK is not referenced.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup lanhp
*
*  =====================================================================
      DOUBLE PRECISION FUNCTION DLANSP( NORM, UPLO, N, AP, WORK )
*
*  -- LAPACK auxiliary routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          NORM, UPLO
      INTEGER            N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   AP( * ), WORK( * )
*     ..
*
* =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ONE, ZERO
      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J, K
      DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DLASSQ
*     ..
*     .. External Functions ..
      LOGICAL            LSAME, DISNAN
      EXTERNAL           LSAME, DISNAN
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          ABS, SQRT
*     ..
*     .. Executable Statements ..
*
      IF( N.EQ.0 ) THEN
         VALUE = ZERO
      ELSE IF( LSAME( NORM, 'M' ) ) THEN
*
*        Find max(abs(A(i,j))).
*
         VALUE = ZERO
         IF( LSAME( UPLO, 'U' ) ) THEN
            K = 1
            DO 20 J = 1, N
               DO 10 I = K, K + J - 1
                  SUM = ABS( AP( I ) )
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   10          CONTINUE
               K = K + J
   20       CONTINUE
         ELSE
            K = 1
            DO 40 J = 1, N
               DO 30 I = K, K + N - J
                  SUM = ABS( AP( I ) )
                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   30          CONTINUE
               K = K + N - J + 1
   40       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR.
     $         ( LSAME( NORM, 'O' ) ) .OR.
     $         ( NORM.EQ.'1' ) ) THEN
*
*        Find normI(A) ( = norm1(A), since A is symmetric).
*
         VALUE = ZERO
         K = 1
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 60 J = 1, N
               SUM = ZERO
               DO 50 I = 1, J - 1
                  ABSA = ABS( AP( K ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
                  K = K + 1
   50          CONTINUE
               WORK( J ) = SUM + ABS( AP( K ) )
               K = K + 1
   60       CONTINUE
            DO 70 I = 1, N
               SUM = WORK( I )
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
   70       CONTINUE
         ELSE
            DO 80 I = 1, N
               WORK( I ) = ZERO
   80       CONTINUE
            DO 100 J = 1, N
               SUM = WORK( J ) + ABS( AP( K ) )
               K = K + 1
               DO 90 I = J + 1, N
                  ABSA = ABS( AP( K ) )
                  SUM = SUM + ABSA
                  WORK( I ) = WORK( I ) + ABSA
                  K = K + 1
   90          CONTINUE
               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
  100       CONTINUE
         END IF
      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR.
     $         ( LSAME( NORM, 'E' ) ) ) THEN
*
*        Find normF(A).
*
         SCALE = ZERO
         SUM = ONE
         K = 2
         IF( LSAME( UPLO, 'U' ) ) THEN
            DO 110 J = 2, N
               CALL DLASSQ( J-1, AP( K ), 1, SCALE, SUM )
               K = K + J
  110       CONTINUE
         ELSE
            DO 120 J = 1, N - 1
               CALL DLASSQ( N-J, AP( K ), 1, SCALE, SUM )
               K = K + N - J + 1
  120       CONTINUE
         END IF
         SUM = 2*SUM
         K = 1
         DO 130 I = 1, N
            IF( AP( K ).NE.ZERO ) THEN
               ABSA = ABS( AP( K ) )
               IF( SCALE.LT.ABSA ) THEN
                  SUM = ONE + SUM*( SCALE / ABSA )**2
                  SCALE = ABSA
               ELSE
                  SUM = SUM + ( ABSA / SCALE )**2
               END IF
            END IF
            IF( LSAME( UPLO, 'U' ) ) THEN
               K = K + I + 1
            ELSE
               K = K + N - I + 1
            END IF
  130    CONTINUE
         VALUE = SCALE*SQRT( SUM )
      END IF
*
      DLANSP = VALUE
      RETURN
*
*     End of DLANSP
*
      END
 |