| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 
 | *> \brief \b CQRT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CQRT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
*                          RWORK, RESULT )
*
*       .. Scalar Arguments ..
*       INTEGER            K, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       REAL               RESULT( * ), RWORK( * )
*       COMPLEX            A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
*      $                   R( LDA, * ), TAU( * ), WORK( LWORK )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CQRT02 tests CUNGQR, which generates an m-by-n matrix Q with
*> orthonormal columns that is defined as the product of k elementary
*> reflectors.
*>
*> Given the QR factorization of an m-by-n matrix A, CQRT02 generates
*> the orthogonal matrix Q defined by the factorization of the first k
*> columns of A; it compares R(1:n,1:k) with Q(1:m,1:n)'*A(1:m,1:k),
*> and checks that the columns of Q are orthonormal.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix Q to be generated.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix Q to be generated.
*>          M >= N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines the
*>          matrix Q. N >= K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX array, dimension (LDA,N)
*>          The m-by-n matrix A which was factorized by CQRT01.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*>          AF is COMPLEX array, dimension (LDA,N)
*>          Details of the QR factorization of A, as returned by CGEQRF.
*>          See CGEQRF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is COMPLEX array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*>          R is COMPLEX array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays A, AF, Q and R. LDA >= M.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is COMPLEX array, dimension (N)
*>          The scalar factors of the elementary reflectors corresponding
*>          to the QR factorization in AF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is REAL array, dimension (2)
*>          The test ratios:
*>          RESULT(1) = norm( R - Q'*A ) / ( M * norm(A) * EPS )
*>          RESULT(2) = norm( I - Q'*Q ) / ( M * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CQRT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               RESULT( * ), RWORK( * )
      COMPLEX            A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
     $                   R( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            ROGUE
      PARAMETER          ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      REAL               ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      REAL               CLANGE, CLANSY, SLAMCH
      EXTERNAL           CLANGE, CLANSY, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CHERK, CLACPY, CLASET, CUNGQR
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the first k columns of the factorization to the array Q
*
      CALL CLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
      CALL CLACPY( 'Lower', M-1, K, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
*
*     Generate the first n columns of the matrix Q
*
      SRNAMT = 'CUNGQR'
      CALL CUNGQR( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy R(1:n,1:k)
*
      CALL CLASET( 'Full', N, K, CMPLX( ZERO ), CMPLX( ZERO ), R, LDA )
      CALL CLACPY( 'Upper', N, K, AF, LDA, R, LDA )
*
*     Compute R(1:n,1:k) - Q(1:m,1:n)' * A(1:m,1:k)
*
      CALL CGEMM( 'Conjugate transpose', 'No transpose', N, K, M,
     $            CMPLX( -ONE ), Q, LDA, A, LDA, CMPLX( ONE ), R, LDA )
*
*     Compute norm( R - Q'*A ) / ( M * norm(A) * EPS ) .
*
      ANORM = CLANGE( '1', M, K, A, LDA, RWORK )
      RESID = CLANGE( '1', N, K, R, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, M ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q'*Q
*
      CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), R, LDA )
      CALL CHERK( 'Upper', 'Conjugate transpose', N, M, -ONE, Q, LDA,
     $            ONE, R, LDA )
*
*     Compute norm( I - Q'*Q ) / ( M * EPS ) .
*
      RESID = CLANSY( '1', 'Upper', N, R, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, M ) ) ) / EPS
*
      RETURN
*
*     End of CQRT02
*
      END
 |