| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 
 | *> \brief \b CTBT06
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE CTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB,
*                          RWORK, RAT )
*
*       .. Scalar Arguments ..
*       CHARACTER          DIAG, UPLO
*       INTEGER            KD, LDAB, N
*       REAL               RAT, RCOND, RCONDC
*       ..
*       .. Array Arguments ..
*       REAL               RWORK( * )
*       COMPLEX            AB( LDAB, * )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> CTBT06 computes a test ratio comparing RCOND (the reciprocal
*> condition number of a triangular matrix A) and RCONDC, the estimate
*> computed by CTBCON.  Information about the triangular matrix A is
*> used if one estimate is zero and the other is non-zero to decide if
*> underflow in the estimate is justified.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] RCOND
*> \verbatim
*>          RCOND is REAL
*>          The estimate of the reciprocal condition number obtained by
*>          forming the explicit inverse of the matrix A and computing
*>          RCOND = 1/( norm(A) * norm(inv(A)) ).
*> \endverbatim
*>
*> \param[in] RCONDC
*> \verbatim
*>          RCONDC is REAL
*>          The estimate of the reciprocal condition number computed by
*>          CTBCON.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*>          UPLO is CHARACTER
*>          Specifies whether the matrix A is upper or lower triangular.
*>          = 'U':  Upper triangular
*>          = 'L':  Lower triangular
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*>          DIAG is CHARACTER
*>          Specifies whether or not the matrix A is unit triangular.
*>          = 'N':  Non-unit triangular
*>          = 'U':  Unit triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The order of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*>          KD is INTEGER
*>          The number of superdiagonals or subdiagonals of the
*>          triangular band matrix A.  KD >= 0.
*> \endverbatim
*>
*> \param[in] AB
*> \verbatim
*>          AB is COMPLEX array, dimension (LDAB,N)
*>          The upper or lower triangular band matrix A, stored in the
*>          first kd+1 rows of the array. The j-th column of A is stored
*>          in the j-th column of the array AB as follows:
*>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
*>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*>          LDAB is INTEGER
*>          The leading dimension of the array AB.  LDAB >= KD+1.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RAT
*> \verbatim
*>          RAT is REAL
*>          The test ratio.  If both RCOND and RCONDC are nonzero,
*>             RAT = MAX( RCOND, RCONDC )/MIN( RCOND, RCONDC ) - 1.
*>          If RAT = 0, the two estimates are exactly the same.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex_lin
*
*  =====================================================================
      SUBROUTINE CTBT06( RCOND, RCONDC, UPLO, DIAG, N, KD, AB, LDAB,
     $                   RWORK, RAT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      CHARACTER          DIAG, UPLO
      INTEGER            KD, LDAB, N
      REAL               RAT, RCOND, RCONDC
*     ..
*     .. Array Arguments ..
      REAL               RWORK( * )
      COMPLEX            AB( LDAB, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      REAL               ANORM, BIGNUM, EPS, RMAX, RMIN
*     ..
*     .. External Functions ..
      REAL               CLANTB, SLAMCH
      EXTERNAL           CLANTB, SLAMCH
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN
*     ..
*     .. Executable Statements ..
*
      EPS = SLAMCH( 'Epsilon' )
      RMAX = MAX( RCOND, RCONDC )
      RMIN = MIN( RCOND, RCONDC )
*
*     Do the easy cases first.
*
      IF( RMIN.LT.ZERO ) THEN
*
*        Invalid value for RCOND or RCONDC, return 1/EPS.
*
         RAT = ONE / EPS
*
      ELSE IF( RMIN.GT.ZERO ) THEN
*
*        Both estimates are positive, return RMAX/RMIN - 1.
*
         RAT = RMAX / RMIN - ONE
*
      ELSE IF( RMAX.EQ.ZERO ) THEN
*
*        Both estimates zero.
*
         RAT = ZERO
*
      ELSE
*
*        One estimate is zero, the other is non-zero.  If the matrix is
*        ill-conditioned, return the nonzero estimate multiplied by
*        1/EPS; if the matrix is badly scaled, return the nonzero
*        estimate multiplied by BIGNUM/TMAX, where TMAX is the maximum
*        element in absolute value in A.
*
         BIGNUM = ONE / SLAMCH( 'Safe minimum' )
         ANORM = CLANTB( 'M', UPLO, DIAG, N, KD, AB, LDAB, RWORK )
*
         RAT = RMAX*( MIN( BIGNUM / MAX( ONE, ANORM ), ONE / EPS ) )
      END IF
*
      RETURN
*
*     End of CTBT06
*
      END
 |