| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 
 | *> \brief \b DRQT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at
*            http://www.netlib.org/lapack/explore-html/
*
*  Definition:
*  ===========
*
*       SUBROUTINE DRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
*                          RWORK, RESULT )
*
*       .. Scalar Arguments ..
*       INTEGER            K, LDA, LWORK, M, N
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
*      $                   R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
*      $                   WORK( LWORK )
*       ..
*
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DRQT02 tests DORGRQ, which generates an m-by-n matrix Q with
*> orthonormal rows that is defined as the product of k elementary
*> reflectors.
*>
*> Given the RQ factorization of an m-by-n matrix A, DRQT02 generates
*> the orthogonal matrix Q defined by the factorization of the last k
*> rows of A; it compares R(m-k+1:m,n-m+1:n) with
*> A(m-k+1:m,1:n)*Q(n-m+1:n,1:n)', and checks that the rows of Q are
*> orthonormal.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrix Q to be generated.  M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrix Q to be generated.
*>          N >= M >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*>          K is INTEGER
*>          The number of elementary reflectors whose product defines the
*>          matrix Q. M >= K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is DOUBLE PRECISION array, dimension (LDA,N)
*>          The m-by-n matrix A which was factorized by DRQT01.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*>          AF is DOUBLE PRECISION array, dimension (LDA,N)
*>          Details of the RQ factorization of A, as returned by DGERQF.
*>          See DGERQF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*>          Q is DOUBLE PRECISION array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*>          R is DOUBLE PRECISION array, dimension (LDA,M)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*>          TAU is DOUBLE PRECISION array, dimension (M)
*>          The scalar factors of the elementary reflectors corresponding
*>          to the RQ factorization in AF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*>          LWORK is INTEGER
*>          The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*>          RESULT is DOUBLE PRECISION array, dimension (2)
*>          The test ratios:
*>          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
*>          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
*  =====================================================================
      SUBROUTINE DRQT02( M, N, K, A, AF, Q, R, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
*     .. Scalar Arguments ..
      INTEGER            K, LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
     $                   R( LDA, * ), RESULT( * ), RWORK( * ), TAU( * ),
     $                   WORK( LWORK )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      DOUBLE PRECISION   ROGUE
      PARAMETER          ( ROGUE = -1.0D+10 )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO
      DOUBLE PRECISION   ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
      EXTERNAL           DLAMCH, DLANGE, DLANSY
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DLACPY, DLASET, DORGRQ, DSYRK
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 ) THEN
         RESULT( 1 ) = ZERO
         RESULT( 2 ) = ZERO
         RETURN
      END IF
*
      EPS = DLAMCH( 'Epsilon' )
*
*     Copy the last k rows of the factorization to the array Q
*
      CALL DLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
      IF( K.LT.N )
     $   CALL DLACPY( 'Full', K, N-K, AF( M-K+1, 1 ), LDA,
     $                Q( M-K+1, 1 ), LDA )
      IF( K.GT.1 )
     $   CALL DLACPY( 'Lower', K-1, K-1, AF( M-K+2, N-K+1 ), LDA,
     $                Q( M-K+2, N-K+1 ), LDA )
*
*     Generate the last n rows of the matrix Q
*
      SRNAMT = 'DORGRQ'
      CALL DORGRQ( M, N, K, Q, LDA, TAU( M-K+1 ), WORK, LWORK, INFO )
*
*     Copy R(m-k+1:m,n-m+1:n)
*
      CALL DLASET( 'Full', K, M, ZERO, ZERO, R( M-K+1, N-M+1 ), LDA )
      CALL DLACPY( 'Upper', K, K, AF( M-K+1, N-K+1 ), LDA,
     $             R( M-K+1, N-K+1 ), LDA )
*
*     Compute R(m-k+1:m,n-m+1:n) - A(m-k+1:m,1:n) * Q(n-m+1:n,1:n)'
*
      CALL DGEMM( 'No transpose', 'Transpose', K, M, N, -ONE,
     $            A( M-K+1, 1 ), LDA, Q, LDA, ONE, R( M-K+1, N-M+1 ),
     $            LDA )
*
*     Compute norm( R - A*Q' ) / ( N * norm(A) * EPS ) .
*
      ANORM = DLANGE( '1', K, N, A( M-K+1, 1 ), LDA, RWORK )
      RESID = DLANGE( '1', K, M, R( M-K+1, N-M+1 ), LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL DLASET( 'Full', M, M, ZERO, ONE, R, LDA )
      CALL DSYRK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, R,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = DLANSY( '1', 'Upper', M, R, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of DRQT02
*
      END
 |