File: dsbt21.f

package info (click to toggle)
lapack 3.2.1-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 55,196 kB
  • ctags: 33,064
  • sloc: fortran: 448,214; perl: 8,226; makefile: 1,528; sh: 87; awk: 70
file content (209 lines) | stat: -rw-r--r-- 6,267 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
      SUBROUTINE DSBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
     $                   RESULT )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      CHARACTER          UPLO
      INTEGER            KA, KS, LDA, LDU, N
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
     $                   U( LDU, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  DSBT21  generally checks a decomposition of the form
*
*          A = U S U'
*
*  where ' means transpose, A is symmetric banded, U is
*  orthogonal, and S is diagonal (if KS=0) or symmetric
*  tridiagonal (if KS=1).
*
*  Specifically:
*
*          RESULT(1) = | A - U S U' | / ( |A| n ulp ) *and*
*          RESULT(2) = | I - UU' | / ( n ulp )
*
*  Arguments
*  =========
*
*  UPLO    (input) CHARACTER
*          If UPLO='U', the upper triangle of A and V will be used and
*          the (strictly) lower triangle will not be referenced.
*          If UPLO='L', the lower triangle of A and V will be used and
*          the (strictly) upper triangle will not be referenced.
*
*  N       (input) INTEGER
*          The size of the matrix.  If it is zero, DSBT21 does nothing.
*          It must be at least zero.
*
*  KA      (input) INTEGER
*          The bandwidth of the matrix A.  It must be at least zero.  If
*          it is larger than N-1, then max( 0, N-1 ) will be used.
*
*  KS      (input) INTEGER
*          The bandwidth of the matrix S.  It may only be zero or one.
*          If zero, then S is diagonal, and E is not referenced.  If
*          one, then S is symmetric tri-diagonal.
*
*  A       (input) DOUBLE PRECISION array, dimension (LDA, N)
*          The original (unfactored) matrix.  It is assumed to be
*          symmetric, and only the upper (UPLO='U') or only the lower
*          (UPLO='L') will be referenced.
*
*  LDA     (input) INTEGER
*          The leading dimension of A.  It must be at least 1
*          and at least min( KA, N-1 ).
*
*  D       (input) DOUBLE PRECISION array, dimension (N)
*          The diagonal of the (symmetric tri-) diagonal matrix S.
*
*  E       (input) DOUBLE PRECISION array, dimension (N-1)
*          The off-diagonal of the (symmetric tri-) diagonal matrix S.
*          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
*          (3,2) element, etc.
*          Not referenced if KS=0.
*
*  U       (input) DOUBLE PRECISION array, dimension (LDU, N)
*          The orthogonal matrix in the decomposition, expressed as a
*          dense matrix (i.e., not as a product of Householder
*          transformations, Givens transformations, etc.)
*
*  LDU     (input) INTEGER
*          The leading dimension of U.  LDU must be at least N and
*          at least 1.
*
*  WORK    (workspace) DOUBLE PRECISION array, dimension (N**2+N)
*
*  RESULT  (output) DOUBLE PRECISION array, dimension (2)
*          The values computed by the two tests described above.  The
*          values are currently limited to 1/ulp, to avoid overflow.
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
*     ..
*     .. Local Scalars ..
      LOGICAL            LOWER
      CHARACTER          CUPLO
      INTEGER            IKA, J, JC, JR, LW
      DOUBLE PRECISION   ANORM, ULP, UNFL, WNORM
*     ..
*     .. External Functions ..
      LOGICAL            LSAME
      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSB, DLANSP
      EXTERNAL           LSAME, DLAMCH, DLANGE, DLANSB, DLANSP
*     ..
*     .. External Subroutines ..
      EXTERNAL           DGEMM, DSPR, DSPR2
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Constants
*
      RESULT( 1 ) = ZERO
      RESULT( 2 ) = ZERO
      IF( N.LE.0 )
     $   RETURN
*
      IKA = MAX( 0, MIN( N-1, KA ) )
      LW = ( N*( N+1 ) ) / 2
*
      IF( LSAME( UPLO, 'U' ) ) THEN
         LOWER = .FALSE.
         CUPLO = 'U'
      ELSE
         LOWER = .TRUE.
         CUPLO = 'L'
      END IF
*
      UNFL = DLAMCH( 'Safe minimum' )
      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
*     Some Error Checks
*
*     Do Test 1
*
*     Norm of A:
*
      ANORM = MAX( DLANSB( '1', CUPLO, N, IKA, A, LDA, WORK ), UNFL )
*
*     Compute error matrix:    Error = A - U S U'
*
*     Copy A from SB to SP storage format.
*
      J = 0
      DO 50 JC = 1, N
         IF( LOWER ) THEN
            DO 10 JR = 1, MIN( IKA+1, N+1-JC )
               J = J + 1
               WORK( J ) = A( JR, JC )
   10       CONTINUE
            DO 20 JR = IKA + 2, N + 1 - JC
               J = J + 1
               WORK( J ) = ZERO
   20       CONTINUE
         ELSE
            DO 30 JR = IKA + 2, JC
               J = J + 1
               WORK( J ) = ZERO
   30       CONTINUE
            DO 40 JR = MIN( IKA, JC-1 ), 0, -1
               J = J + 1
               WORK( J ) = A( IKA+1-JR, JC )
   40       CONTINUE
         END IF
   50 CONTINUE
*
      DO 60 J = 1, N
         CALL DSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
   60 CONTINUE
*
      IF( N.GT.1 .AND. KS.EQ.1 ) THEN
         DO 70 J = 1, N - 1
            CALL DSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
     $                  WORK )
   70    CONTINUE
      END IF
      WNORM = DLANSP( '1', CUPLO, N, WORK, WORK( LW+1 ) )
*
      IF( ANORM.GT.WNORM ) THEN
         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
      ELSE
         IF( ANORM.LT.ONE ) THEN
            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
         ELSE
            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
         END IF
      END IF
*
*     Do Test 2
*
*     Compute  UU' - I
*
      CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
     $            N )
*
      DO 80 J = 1, N
         WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
   80 CONTINUE
*
      RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ),
     $              DBLE( N ) ) / ( N*ULP )
*
      RETURN
*
*     End of DSBT21
*
      END