File: sbdt01.f

package info (click to toggle)
lapack 3.2.1-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 55,196 kB
  • ctags: 33,064
  • sloc: fortran: 448,214; perl: 8,226; makefile: 1,528; sh: 87; awk: 70
file content (211 lines) | stat: -rw-r--r-- 6,671 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
      SUBROUTINE SBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
     $                   RESID )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            KD, LDA, LDPT, LDQ, M, N
      REAL               RESID
*     ..
*     .. Array Arguments ..
      REAL               A( LDA, * ), D( * ), E( * ), PT( LDPT, * ),
     $                   Q( LDQ, * ), WORK( * )
*     ..
*
*  Purpose
*  =======
*
*  SBDT01 reconstructs a general matrix A from its bidiagonal form
*     A = Q * B * P'
*  where Q (m by min(m,n)) and P' (min(m,n) by n) are orthogonal
*  matrices and B is bidiagonal.
*
*  The test ratio to test the reduction is
*     RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
*  where PT = P' and EPS is the machine precision.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrices A and Q.
*
*  N       (input) INTEGER
*          The number of columns of the matrices A and P'.
*
*  KD      (input) INTEGER
*          If KD = 0, B is diagonal and the array E is not referenced.
*          If KD = 1, the reduction was performed by xGEBRD; B is upper
*          bidiagonal if M >= N, and lower bidiagonal if M < N.
*          If KD = -1, the reduction was performed by xGBBRD; B is
*          always upper bidiagonal.
*
*  A       (input) REAL array, dimension (LDA,N)
*          The m by n matrix A.
*
*  LDA     (input) INTEGER
*          The leading dimension of the array A.  LDA >= max(1,M).
*
*  Q       (input) REAL array, dimension (LDQ,N)
*          The m by min(m,n) orthogonal matrix Q in the reduction
*          A = Q * B * P'.
*
*  LDQ     (input) INTEGER
*          The leading dimension of the array Q.  LDQ >= max(1,M).
*
*  D       (input) REAL array, dimension (min(M,N))
*          The diagonal elements of the bidiagonal matrix B.
*
*  E       (input) REAL array, dimension (min(M,N)-1)
*          The superdiagonal elements of the bidiagonal matrix B if
*          m >= n, or the subdiagonal elements of B if m < n.
*
*  PT      (input) REAL array, dimension (LDPT,N)
*          The min(m,n) by n orthogonal matrix P' in the reduction
*          A = Q * B * P'.
*
*  LDPT    (input) INTEGER
*          The leading dimension of the array PT.
*          LDPT >= max(1,min(M,N)).
*
*  WORK    (workspace) REAL array, dimension (M+N)
*
*  RESID   (output) REAL
*          The test ratio:  norm(A - Q * B * P') / ( n * norm(A) * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            I, J
      REAL               ANORM, EPS
*     ..
*     .. External Functions ..
      REAL               SASUM, SLAMCH, SLANGE
      EXTERNAL           SASUM, SLAMCH, SLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           SCOPY, SGEMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          MAX, MIN, REAL
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      IF( M.LE.0 .OR. N.LE.0 ) THEN
         RESID = ZERO
         RETURN
      END IF
*
*     Compute A - Q * B * P' one column at a time.
*
      RESID = ZERO
      IF( KD.NE.0 ) THEN
*
*        B is bidiagonal.
*
         IF( KD.NE.0 .AND. M.GE.N ) THEN
*
*           B is upper bidiagonal and M >= N.
*
            DO 20 J = 1, N
               CALL SCOPY( M, A( 1, J ), 1, WORK, 1 )
               DO 10 I = 1, N - 1
                  WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
   10          CONTINUE
               WORK( M+N ) = D( N )*PT( N, J )
               CALL SGEMV( 'No transpose', M, N, -ONE, Q, LDQ,
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
               RESID = MAX( RESID, SASUM( M, WORK, 1 ) )
   20       CONTINUE
         ELSE IF( KD.LT.0 ) THEN
*
*           B is upper bidiagonal and M < N.
*
            DO 40 J = 1, N
               CALL SCOPY( M, A( 1, J ), 1, WORK, 1 )
               DO 30 I = 1, M - 1
                  WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
   30          CONTINUE
               WORK( M+M ) = D( M )*PT( M, J )
               CALL SGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
               RESID = MAX( RESID, SASUM( M, WORK, 1 ) )
   40       CONTINUE
         ELSE
*
*           B is lower bidiagonal.
*
            DO 60 J = 1, N
               CALL SCOPY( M, A( 1, J ), 1, WORK, 1 )
               WORK( M+1 ) = D( 1 )*PT( 1, J )
               DO 50 I = 2, M
                  WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
     $                          D( I )*PT( I, J )
   50          CONTINUE
               CALL SGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
               RESID = MAX( RESID, SASUM( M, WORK, 1 ) )
   60       CONTINUE
         END IF
      ELSE
*
*        B is diagonal.
*
         IF( M.GE.N ) THEN
            DO 80 J = 1, N
               CALL SCOPY( M, A( 1, J ), 1, WORK, 1 )
               DO 70 I = 1, N
                  WORK( M+I ) = D( I )*PT( I, J )
   70          CONTINUE
               CALL SGEMV( 'No transpose', M, N, -ONE, Q, LDQ,
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
               RESID = MAX( RESID, SASUM( M, WORK, 1 ) )
   80       CONTINUE
         ELSE
            DO 100 J = 1, N
               CALL SCOPY( M, A( 1, J ), 1, WORK, 1 )
               DO 90 I = 1, M
                  WORK( M+I ) = D( I )*PT( I, J )
   90          CONTINUE
               CALL SGEMV( 'No transpose', M, M, -ONE, Q, LDQ,
     $                     WORK( M+1 ), 1, ONE, WORK, 1 )
               RESID = MAX( RESID, SASUM( M, WORK, 1 ) )
  100       CONTINUE
         END IF
      END IF
*
*     Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
*
      ANORM = SLANGE( '1', M, N, A, LDA, WORK )
      EPS = SLAMCH( 'Precision' )
*
      IF( ANORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         IF( ANORM.GE.RESID ) THEN
            RESID = ( RESID / ANORM ) / ( REAL( N )*EPS )
         ELSE
            IF( ANORM.LT.ONE ) THEN
               RESID = ( MIN( RESID, REAL( N )*ANORM ) / ANORM ) /
     $                 ( REAL( N )*EPS )
            ELSE
               RESID = MIN( RESID / ANORM, REAL( N ) ) /
     $                 ( REAL( N )*EPS )
            END IF
         END IF
      END IF
*
      RETURN
*
*     End of SBDT01
*
      END