File: installation.hints

package info (click to toggle)
lapack 3.2.1-8
  • links: PTS, VCS
  • area: main
  • in suites: squeeze
  • size: 55,196 kB
  • ctags: 33,064
  • sloc: fortran: 448,214; perl: 8,226; makefile: 1,528; sh: 87; awk: 70
file content (1464 lines) | stat: -rw-r--r-- 55,950 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
 ***********************************************************************
 -----------------------------------
 MACHINE-SPECIFIC INSTALLATION HINTS:
 -----------------------------------

 Entries are listed in ALPHABETICAL ORDER by the computer name.
 
 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 TEMPLATE FOR THE ENTRIES:                                             +
 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 ==================================================================    +
 Computer name, version of OS, and version of fortran compiler used    +
 ==================================================================    +
                                                                       +
 Compiler/options:                                                     +
                                                                       +
 BLAS:                                                                 +
                                                                       +
 Test status:                                                          +
                                                                       +
 Notes:                                                                +
                                                                       +
 ----- Date reported:                                                  +
                                                                       +
 ==================================================================    +
 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
 
 ----------------------
 KNOWN TESTING FAILURES: 
 ----------------------

 The only known testing failures are in condition number estimation
 routines in the generalized nonsymmetric eigenproblem testing.  
 Specifically in sgd.out, dgd.out, cgd.out and zgd.out. The cause for 
 the failures of some test cases is that the mathematical algorithm 
 used for estimating the condition numbers could over- or under-estimate
 the true values in a certain factor in some rare cases.  Further
 details can be found in LAPACK Working Note 87. 
 
 The failures noted below were reported to us and are still under
 investigation.  Please contact us (lapack@cs.utk.edu) if you feel that
 an entry is out-of-date or incorrect.
 
 Please NOTE that no claim is made as to the accuracy of the installation
 information for specific computers; in some cases, no attempts were made
 at verification.

 ======================================================================
 Apple Mac G4
 OS: PPC RedHat Linux 6.0 (kernel 2.2.15)
 g77 (version egcs-2.91.66)

 LAPACK, version 3.0 + update

 FORTRAN  = g77 
 OPTS     = -fno-f2c -O3
 DRVOPTS  = $(OPTS)
 NOOPT    =
 LOADER   = g77
 LOADOPTS =
  
 ARCH     = ar
 ARCHFLAGS= cr
 RANLIB   = ranlib

 Notes:

 (1)Do not use -funroll-all-loops option!

 Test status:  Expected failures in sgd.out and cgd.out;  
               Minor failures of SPB and SLS in stest.out and ctest.out;
               
 ----- Date reported:  March, 2000

 =======================================================================
 CRAY C90, Unicos 9.0 with Programming Environment 3.0

 LAPACK: VERSION 3.0
 
 FORTRAN  = f90
 OPTS     = -O3
 DRVOPTS  = $(OPTS)
 NOOPT    = -g
 LOADER   = f90
 LOADOPTS =
 
 BLAS:  /lib/libsci.a
    except for SNRM2 and SCNRM2  (use Fortran versions)

 Notes:
 
 1. The Cray compilers implement a complex divide without scaling.  To run
    the complex linear equation tests on the T3D, I had to modify SLABAD to
    take the square root of overflow and underflow.  I ran the eigenvalue
    tests with the default version of SLABAD.
 
 2. I also needed the Fortran SNRM2 when running the real linear equation
    tests on a CRAY C90.
 
 3. Set ILAENV=0 for ISPEC=10 and ISPEC=11 in LAPACK/SRC/ilaenv.f, as
    well as the specialized versions of ILAENV in TESTING/LIN/, TESTING/EIG/.
 
 Test status:  Expected failures in sgd.out and cgd.out;
               Failure in ssg.in (under investigation);

 -------
 ssg.out
 -------

 SSG:  NB =   3, NBMIN =   2, NX =   1
 SDRVSG: SSYGVX(V,AU) returned INFO=     1.
         N=     3, JTYPE=    10, ISEED=(  458, 2510, 3431,  397)

 SSG -- Real Symmetric Generalized eigenvalue problem
 Matrix types (see xDRVSG for details): 

 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense or Banded Symmetric Matrices: 
  8=Evenly spaced eigenvals.          15=Matrix with small random entries.
  9=Geometrically spaced eigenvals.   16=Evenly spaced eigenvals, KA=1, KB=1.
 10=Clustered eigenvalues.            17=Evenly spaced eigenvals, KA=2, KB=1.
 11=Large, evenly spaced eigenvals.   18=Evenly spaced eigenvals, KA=2, KB=2.
 12=Small, evenly spaced eigenvals.   19=Evenly spaced eigenvals, KA=3, KB=1.
 13=Matrix with random O(1) entries.  20=Evenly spaced eigenvals, KA=3, KB=2.
 14=Matrix with large random entries. 21=Evenly spaced eigenvals, KA=3, KB=3.

 Tests performed:   
( For each pair (A,B), where A is of the given type 
 and B is a random well-conditioned matrix. D is 
 diagonal, and Z is orthogonal. )
 1 = SSYGV, with ITYPE=1 and UPLO='U':  | A Z - B Z D | / ( |A| |Z| n ulp )     
 2 = SSPGV, with ITYPE=1 and UPLO='U':  | A Z - B Z D | / ( |A| |Z| n ulp )     
 3 = SSBGV, with ITYPE=1 and UPLO='U':  | A Z - B Z D | / ( |A| |Z| n ulp )     
 4 = SSYGV, with ITYPE=1 and UPLO='L':  | A Z - B Z D | / ( |A| |Z| n ulp )     
 5 = SSPGV, with ITYPE=1 and UPLO='L':  | A Z - B Z D | / ( |A| |Z| n ulp )     
 6 = SSBGV, with ITYPE=1 and UPLO='L':  | A Z - B Z D | / ( |A| |Z| n ulp )     
 7 = SSYGV, with ITYPE=2 and UPLO='U':  | A B Z - Z D | / ( |A| |Z| n ulp )     
 8 = SSPGV, with ITYPE=2 and UPLO='U':  | A B Z - Z D | / ( |A| |Z| n ulp )     
 9 = SSPGV, with ITYPE=2 and UPLO='L':  | A B Z - Z D | / ( |A| |Z| n ulp )     
10 = SSPGV, with ITYPE=2 and UPLO='L':  | A B Z - Z D | / ( |A| |Z| n ulp )     
11 = SSYGV, with ITYPE=3 and UPLO='U':  | B A Z - Z D | / ( |A| |Z| n ulp )     
12 = SSPGV, with ITYPE=3 and UPLO='U':  | B A Z - Z D | / ( |A| |Z| n ulp )     
13 = SSYGV, with ITYPE=3 and UPLO='L':  | B A Z - Z D | / ( |A| |Z| n ulp )     
14 = SSPGV, with ITYPE=3 and UPLO='L':  | B A Z - Z D | / ( |A| |Z| n ulp )     
 Matrix order=    3, type=10, seed= 458,2510,3431, 397, result  53 is 3.518E+13
 SSG:    1 out of 10288 tests failed to pass the threshold 

 ----- Date reported:  April, 1999
 
 =======================================================================
 =======================================================================
 DCG ALPHA LX164
 OS: Alpha RedHat Linux 6.0 (kernel 2.2.5-16)
 g77 (version egcs-2.91.66)

 LAPACK, version 3.0 + update

 FORTRAN  = g77 
 OPTS     = -funroll-all-loops -fno-f2c -O3
 DRVOPTS  = $(OPTS)
 NOOPT    =
 LOADER   = g77
 LOADOPTS =
  
 ARCH     = ar
 ARCHFLAGS= cr
 RANLIB   = ranlib

 Notes:

 (1)Set ILAENV=0 for ISPEC=10 and ISPEC=11 in LAPACK/SRC/ilaenv.f, as
    well as the specialized versions of ILAENV in TESTING/LIN/, TESTING/EIG/.

 Test status:  Expected failures in sgd.out and cgd.out;  
               Minor failures of SPB and SLS in stest.out and ctest.out;
               Failure in csvd.out and minor failure in zsep.out;
               Failure in cgbak.out (under investigation, optimization?);
               
 ---------
 cgbak.out
 ---------

 .. test output of CGGBAK .. 
 value of largest test error                  =   0.796E+04
 example number where CGGBAL info is not 0    =   0
 example number where CGGBAK(L) info is not 0 =   0
 example number where CGGBAK(R) info is not 0 =   0
 example number having largest error          =   5
 number of examples where info is not 0       =   0
 total number of examples tested              =  10


 End of tests
 Total time used =         0.01 seconds

 ----- Date reported:  March, 2000

 =======================================================================
 =======================================================================
  DEC 3000-500 ALPHA 
  OS: OSF1 V4.0 (Rev. 1091)
  COMPILER: F90

  LAPACK, version 3.0 + update

  FORTRAN  = f77
  OPTS     = -O4 -fpe1
  DRVOPTS  = $(OPTS)
  NOOPT    =
  LOADER   = f77
  LOADOPTS =
  
  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = ranlib

  BLASLIB     = -ldxml

 Test status:  Expected failures in sgd.out and cgd.out;  
               Minor failures of SPB and SLS in stest.out and ctest.out;
               Minor failures in ssep.out/csep.out and ssvd.out/csvd.out;
               Failure in cgbak.out (under investigation, optimization?);
               
               If (-O5 -fpe1 level of optimization) is used, failures in
               STP,DTP,CTP, and ZTP tests in _test.out;

 ---------
 cgbak.out
 ---------

 .. test output of CGGBAK .. 
 value of largest test error                  =   0.796E+04
 example number where CGGBAL info is not 0    =   0
 example number where CGGBAK(L) info is not 0 =   0
 example number where CGGBAK(R) info is not 0 =   0
 example number having largest error          =   5
 number of examples where info is not 0       =   0
 total number of examples tested              =  10


 End of tests
 Total time used =         0.01 seconds

 ----- Date reported:  November, 1999

 =======================================================================
 =======================================================================
  Hewlett Packard HP 9000 Model 735
  OS:  HP-UX A.09.05
  F77, HP-UX Release 10.0

  LAPACK, version 3.0

  FORTRAN  = f77
  OPTS     = +O4 +U77
  DRVOPTS  = $(OPTS) -K
  NOOPT    = +U77
  LOADER   = f77
  LOADOPTS = -Aa +U77

  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = echo

  BLASLIB = -lblas (HP BLAS)

 Test status:  As yet, Unable to run xeigtst_ tests due to swap space
               problem

 Notes:

 1.  Due to unscaled complex divide, you must set LAPACK/SRC/slabad.f
     and dlabad.f to take the square root of SMLNUM and BIGNUM as for
     the Cray.

 2.  LAPACK/INSTALL/testieee test failed for NaN arithmetic.  Set
     ILAENV=0 for ISPEC=10 and ISPEC=11 in ilaenv.f.

 ----- Date reported:  April, 1999

 =======================================================================
 =======================================================================
 IBM RS/6000 Power3
 OS:  AIX VERSION 4.3.3
 COMPILER:  XL FORTRAN Compiler Version 6.1.0.0

 LAPACK, version 3.0 + UPDATE

 FORTRAN  = xlf
 OPTS     = -O3 -qarch=pwr3 -qmaxmem=-1
 DRVOPTS  = $(OPTS)
 NOOPT    =
 LOADER   = xlf
 LOADOPTS =

 ARCH     = ar
 ARCHFLAGS= cr
 RANLIB   = ranlib

 BLASLIB     = -lessl
 
 BLAS:    (ESSL version 3.1.1.0)
 
 Notes:
 
 (1) use XLF-supplied routine ETIME_ for second.f and dsecnd.f

 (2) Remove all optimization for SRC/cgtrfs.f (xlf -qarch=pwr3)
                                 SRC/zgtrfs.f
                                 TESTING/LIN/cgtt05.f
                                 TESTING/LIN/zgtt05.f
     Example error message:
"cgtrfs.f", 1500-008 (S) COMPILER LIMIT EXCEEDED in cgtrfs: Program too
 complicated to be compiled.  Compilation ended.  Reduce the complexity of
 the program and recompile, or lower the level of optimization and recompile.
 
 Test status: Expected failures in _gd.out;
              RMAX failures in sec.out/dec.out;
              Failure in zgbak.out (under investigation, optimization?);
              Failure in ssvd.out/dsvd.out/zsvd.out (under investigation);
              Minors failure in ssep.out and snep.out;
              Failures in csep.out/zsep.out (under investigation).
 --------
 dec.out
 -------

 Tests of the Nonsymmetric eigenproblem condition estimation routines
 DLALN2, DLASY2, DLANV2, DLAEXC, DTRSYL, DTREXC, DTRSNA, DTRSEN, DLAQTR

 Relative machine precision (EPS) =      .222045D-15
 Safe minimum (SFMIN)             =      .222507-307

 Routines pass computational tests if test ratio is less than   20.00


 DEC routines passed the tests of the error exits ( 35 tests done)
 Error in DLANV2: RMAX =    .117D+16
 LMAX =    16067 NINFO=       0 KNT=   20736
 Error in DLAEXC: RMAX =    .808D+15
 LMAX =    11125 NINFO=     148       0 KNT=   42258
 Error in DTREXC: RMAX =    .686D+15
 LMAX =       14 NINFO=       0       0       0 KNT=      14
 Error in DTRSEN: RMAX =    .728D+05    .152D+01    .152D+01
 LMAX =       76      68      68 NINFO=       0       0       0 KNT=      78


 End of tests
 Total time used =         6.65 seconds

 --------
 zgbak.out
 ---------

 .. test output of ZGGBAK .. 
 value of largest test error                  =    .796D+04
 example number where ZGGBAL info is not 0    =   0
 example number where ZGGBAK(L) info is not 0 =   0
 example number where ZGGBAK(R) info is not 0 =   0
 example number having largest error          =   5
 number of examples where info is not 0       =   0
 total number of examples tested              =  10


 End of tests
 Total time used =          .02 seconds

 --------
 ssvd.out
 --------

 SVD:  NB =   1, NBMIN =   2, NX =   1, NRHS =   2
 SCHKBD: SBDSDC(vects) returned INFO=     1.
         M=    30, N=    40, JTYPE=    12, ISEED=( 2195,  634, 3653, 1853)

 SBD -- Real Singular Value Decomposition
 Matrix types (see xCHKBD for details):
 Diagonal matrices:
   1: Zero                             5: Clustered entries
   2: Identity                         6: Large, evenly spaced entries
   3: Evenly spaced entries            7: Small, evenly spaced entries
   4: Geometrically spaced entries
 General matrices:
   8: Evenly spaced sing. vals.       12: Small, evenly spaced sing vals
   9: Geometrically spaced sing vals  13: Random, O(1) entries
  10: Clustered sing. vals.           14: Random, scaled near overflow
  11: Large, evenly spaced sing vals  15: Random, scaled near underflow

 Test ratios:  (B: bidiagonal, S: diagonal, Q, P, U, and V: orthogonal
                X: m x nrhs, Y = Q' X, and Z = U' Y)
   1: norm( A - Q B P' ) / ( norm(A) max(m,n) ulp )
   2: norm( I - Q' Q )   / ( m ulp )
   3: norm( I - P' P )   / ( n ulp )
   4: norm( B - U S V' ) / ( norm(B) min(m,n) ulp )
   5: norm( Y - U Z )    / ( norm(Z) max(min(m,n),k) ulp )
   6: norm( I - U' U )   / ( min(m,n) ulp )
   7: norm( I - V' V )   / ( min(m,n) ulp )
   8: Test ordering of S  (0 if nondecreasing, 1/ulp  otherwise)
   9: norm( S - S2 )     / ( norm(S) ulp ), where S2 is computed
                                            without computing U and V'
  10: Sturm sequence test (0 if sing. vals of B within THRESH of S)
  11: norm( A - (QU) S (V' P') ) / ( norm(A) max(m,n) ulp )
  12: norm( X - (QU) Z )         / ( |X| max(M,k) ulp )
  13: norm( I - (QU)'(QU) )      / ( M ulp )
  14: norm( I - (V' P') (P V) )  / ( N ulp )
 M=   30, N=   40, type 12, seed=2195, 634,3653,1853, test(15)=  .8389E+07
 SBD:      1 out of   5510 tests failed to pass the threshold
 *** Error code from SCHKBD =    1

 --------
 csep.out
 --------

 SEP:  NB =   3, NBMIN =   2, NX =   9

 All tests for CST passed the threshold ( 3276 tests run)

 CST -- Complex Hermitian eigenvalue problem
 Matrix types (see xDRVST for details):

 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Hermitian Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.

 Tests performed:  See cdrvst.f
 Matrix order=   20, type= 9, seed=1494,3156,1807,2209, result  47 is 1.006E+04
 Matrix order=   20, type= 9, seed=1494,3156,1807,2209, result 101 is  114.52
 CST drivers:      2 out of  11664 tests failed to pass the threshold

 --------
 zsep.out
 --------

 SEP:  NB =   3, NBMIN =   2, NX =   9

 All tests for ZST passed the threshold ( 3276 tests run)

 ZST -- Complex Hermitian eigenvalue problem
 Matrix types (see xDRVST for details): 

 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Hermitian Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.

 Tests performed:  See cdrvst.f
 Matrix order=    5, type=10, seed= 791,4087,1614,3401, result  46 is      NaNQ
 Matrix order=    5, type=10, seed= 791,4087,1614,3401, result  47 is 4.504D+15
 Matrix order=    5, type=10, seed= 791,4087,1614,3401, result  48 is      NaNQ
 ZST drivers:      3 out of  11664 tests failed to pass the threshold

 ----- Date reported:  November, 1999
 
 =======================================================================
 =======================================================================
 IBM RISC/6000 model 550
 OS:  AIX VERSION 4.1
 COMPILER:  XL FORTRAN Compiler Version 4.1

 LAPACK, version 3.0

 FORTRAN  = xlf
 OPTS     = -O3 -qmaxmem=-1

            (except -O2 for LAPACK/SRC/cgelsx.f )

            (except -O2 for LAPACK/TESTING/LIN/zchktp.f )

 DRVOPTS  = $(OPTS)
 NOOPT    =
 LOADER   = xlf
 LOADOPTS =

 ARCH     = ar
 ARCHFLAGS= cr
 RANLIB   = ranlib

 BLASLIB     = -lessl
 
 BLAS:    (ESSL version 2.2.2.2)
 
 Notes:
 
 (1) use XLF-supplied routine ETIME_ for second.f and dsecnd.f
 
 Test status: Expected failures in _gd.out;
              Failure in dsvd.out (under investigation);
              Failures in dsep.out and zsep.out (under investigation).

 --------
 dsvd.out
 --------

 SVD:  NB =   1, NBMIN =   2, NX =   1, NRHS =   2
 DCHKBD: DBDSDC(vects) returned INFO=     1.
         M=    30, N=    40, JTYPE=    12, ISEED=( 2195,  634, 3653, 1853)
 
 DBD -- Real Singular Value Decomposition
 Matrix types (see xCHKBD for details):
 Diagonal matrices:
   1: Zero                             5: Clustered entries
   2: Identity                         6: Large, evenly spaced entries
   3: Evenly spaced entries            7: Small, evenly spaced entries
   4: Geometrically spaced entries
 General matrices:
   8: Evenly spaced sing. vals.       12: Small, evenly spaced sing vals
   9: Geometrically spaced sing vals  13: Random, O(1) entries
  10: Clustered sing. vals.           14: Random, scaled near overflow
  11: Large, evenly spaced sing vals  15: Random, scaled near underflow
 
 Test ratios:  (B: bidiagonal, S: diagonal, Q, P, U, and V: orthogonal
                X: m x nrhs, Y = Q' X, and Z = U' Y)
   1: norm( A - Q B P' ) / ( norm(A) max(m,n) ulp )
   2: norm( I - Q' Q )   / ( m ulp )
   3: norm( I - P' P )   / ( n ulp )
   4: norm( B - U S V' ) / ( norm(B) min(m,n) ulp )
   5: norm( Y - U Z )    / ( norm(Z) max(min(m,n),k) ulp )
   6: norm( I - U' U )   / ( min(m,n) ulp )
   7: norm( I - V' V )   / ( min(m,n) ulp )
   8: Test ordering of S  (0 if nondecreasing, 1/ulp  otherwise)
   9: norm( S - S2 )     / ( norm(S) ulp ), where S2 is computed
                                            without computing U and V'
  10: Sturm sequence test (0 if sing. vals of B within THRESH of S)
  11: norm( A - (QU) S (V' P') ) / ( norm(A) max(m,n) ulp )
  12: norm( X - (QU) Z )         / ( |X| max(M,k) ulp )
  13: norm( I - (QU)'(QU) )      / ( M ulp )
  14: norm( I - (V' P') (P V) )  / ( N ulp )
 M=   30, N=   40, type 12, seed=2195, 634,3653,1853, test(15)=  .4504E+16
 DBD:      1 out of   5510 tests failed to pass the threshold
 *** Error code from DCHKBD =    1

 --------
 dsep.out
 --------

 SEP:  NB =   3, NBMIN =   2, NX =   5
 
 DST -- Real Symmetric eigenvalue problem
 Matrix types (see DCHKST for details):
 
 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Symmetric Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 16=Positive definite, evenly spaced eigenvalues
 17=Positive definite, geometrically spaced eigenvlaues
 18=Positive definite, clustered eigenvalues
 19=Positive definite, small evenly spaced eigenvalues
 20=Positive definite, large evenly spaced eigenvalues
 21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
 
Test performed:  see DCHKST for details.
 
 N=   40, seed=1451, 418,3916,1509, type  9, test(35)=  .335E+12
 N=   40, seed=1451, 418,3916,1509, type  9, test(36)=  .269E+15
 DST:    2 out of  4662 tests failed to pass the threshold
 
 All tests for DST drivers  passed the threshold ( 14256 tests run)

 --------
 zsep.out
 --------

 SEP:  NB =   3, NBMIN =   2, NX =   0
 
 ZST -- Complex Hermitian eigenvalue problem
 Matrix types (see ZCHKST for details):
 
 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Hermitian Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 16=Positive definite, evenly spaced eigenvalues
 17=Positive definite, geometrically spaced eigenvlaues
 18=Positive definite, clustered eigenvalues
 19=Positive definite, small evenly spaced eigenvalues
 20=Positive definite, large evenly spaced eigenvalues
 21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
 
Test performed:  see ZCHKST for details.
 
 Matrix order=   40, type= 9, seed= 419, 892, 345,2089, result  35 is 2.756D+12
 Matrix order=   40, type= 9, seed= 419, 892, 345,2089, result  36 is 3.073D+14
 ZST:    2 out of  4662 tests failed to pass the threshold
 
 All tests for ZST drivers  passed the threshold ( 11664 tests run)

 ----- Date reported:  April, 1999
 
  =======================================================================
  =======================================================================
  Intel Pentium 120MHz (IBM Thinkpad 760E)
  Linux 2.0.34
  g77 (version egcs-2.91.60)

  LAPACK, version 3.0

  FORTRAN  = g77
  OPTS     = -g
  DRVOPTS  = $(OPTS)
  NOOPT    = -g
  LOADER   = g77
  LOADOPTS = -g

  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = ranlib

  BLASLIB  =  Fortran 77 BLAS

 Test status: Expected failures in _gd.out;
              Two failures in ded.out (DES, DSX);
              One failure in dgg.out (DGG);

 -------
 ded.out
 -------

 DGEES  passed the tests of the error exits (  6 tests done)
 DDRVES: DGEES1 returned INFO=     6.
         N=     5, JTYPE=    17, ISEED=(  100, 2082,   33,  613)
 
 DES -- Real Schur Form Decomposition Driver
 Matrix types (see DDRVES for details):
 
 Special Matrices:
  1=Zero matrix.                          5=Diagonal: geometr. spaced entries.
  2=Identity matrix.                      6=Diagonal: clustered entries.
  3=Transposed Jordan block.              7=Diagonal: large, evenly spaced.
  4=Diagonal: evenly spaced entries.      8=Diagonal: small, evenly spaced.
 Dense, Non-Symmetric Matrices:
  9=Well-cond., evenly spaced eigenvals. 14=Ill-cond., geomet. spaced eigenals.
 10=Well-cond., geom. spaced eigenvals.  15=Ill-conditioned, clustered e.vals.
 11=Well-conditioned, clustered e.vals.  16=Ill-cond., random complex
 12=Well-cond., random complex           17=Ill-cond., large rand. complx
 13=Ill-conditioned, evenly spaced.      18=Ill-cond., small rand. complx
 19=Matrix with random O(1) entries.     21=Matrix with small random entries.
 20=Matrix with large random entries.
 
 Tests performed with test threshold =   20.00
 ( A denotes A on input and T denotes A on output)
 
 1 = 0 if T in Schur form (no sort),   1/ulp otherwise
 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)
 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort)
 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort),  1/ulp otherwise
 5 = 0 if T same no matter if VS computed (no sort),  1/ulp otherwise
 6 = 0 if WR, WI same no matter if VS computed (no sort),  1/ulp otherwise
 7 = 0 if T in Schur form (sort),   1/ulp otherwise
 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)
 9 = | I - VS transpose(VS) | / ( n ulp ) (sort)
 10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort),  1/ulp otherwise
 11 = 0 if T same no matter if VS computed (sort),  1/ulp otherwise
 12 = 0 if WR, WI same no matter if VS computed (sort),  1/ulp otherwise
 13 = 0 if sorting succesful, 1/ulp otherwise
 
 N=    5, IWK= 2, seed= 100,2082,  33, 613, type 17, test( 7)= 0.450E+16
 DES:    1 out of  3270 tests failed to pass the threshold
 *** Error code from  DGEES =    6
 
 ...

 DGEESX passed the tests of the error exits (  7 tests done)
 DGET24: DGEESX1 returned INFO=     6.
         N=     5, JTYPE=    17, ISEED=(  100, 2082,   33,  613)
 
 DSX -- Real Schur Form Decomposition Expert Driver
 Matrix types (see DDRVSX for details):
 
 Special Matrices:
  1=Zero matrix.                          5=Diagonal: geometr. spaced entries.
  2=Identity matrix.                      6=Diagonal: clustered entries.
  3=Transposed Jordan block.              7=Diagonal: large, evenly spaced.
  4=Diagonal: evenly spaced entries.      8=Diagonal: small, evenly spaced.
 Dense, Non-Symmetric Matrices:
  9=Well-cond., evenly spaced eigenvals. 14=Ill-cond., geomet. spaced eigenals.
 10=Well-cond., geom. spaced eigenvals.  15=Ill-conditioned, clustered e.vals.
 11=Well-conditioned, clustered e.vals.  16=Ill-cond., random complex
 12=Well-cond., random complex           17=Ill-cond., large rand. complx
 13=Ill-conditioned, evenly spaced.      18=Ill-cond., small rand. complx
 19=Matrix with random O(1) entries.     21=Matrix with small random entries.
 20=Matrix with large random entries.
 
 Tests performed with test threshold =   20.00
 ( A denotes A on input and T denotes A on output)
 
 1 = 0 if T in Schur form (no sort),   1/ulp otherwise
 2 = | A - VS T transpose(VS) | / ( n |A| ulp ) (no sort)
 3 = | I - VS transpose(VS) | / ( n ulp ) (no sort)
 4 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (no sort),  1/ulp otherwise
 5 = 0 if T same no matter if VS computed (no sort),  1/ulp otherwise
 6 = 0 if WR, WI same no matter if VS computed (no sort),  1/ulp otherwise
 7 = 0 if T in Schur form (sort),   1/ulp otherwise
 8 = | A - VS T transpose(VS) | / ( n |A| ulp ) (sort)
 9 = | I - VS transpose(VS) | / ( n ulp ) (sort)
 10 = 0 if WR+sqrt(-1)*WI are eigenvalues of T (sort),  1/ulp otherwise
 11 = 0 if T same no matter what else computed (sort),  1/ulp otherwise
 12 = 0 if WR, WI same no matter what else computed (sort), 1/ulp otherwise
 13 = 0 if sorting succesful, 1/ulp otherwise
 14 = 0 if RCONDE same no matter what else computed, 1/ulp otherwise
 15 = 0 if RCONDv same no matter what else computed, 1/ulp otherwise
 16 = | RCONDE - RCONDE(precomputed) | / cond(RCONDE),
 17 = | RCONDV - RCONDV(precomputed) | / cond(RCONDV),
 N=    5, IWK= 2, seed= 100,2082,  33, 613, type 17, test( 7)= 0.450E+16
 DSX:    1 out of  3500 tests failed to pass the threshold

 -------
 dgg.out
 -------

 DGG:  NB =   2, NBMIN =   2, NS =   4, MAXB =   2, NBCOL =   2
 DCHKGG: DHGEQZ(E) returned INFO=     9.
         N=    16, JTYPE=    18, ISEED=(  740, 2515, 3243, 3753)
 
 DGG -- Real Generalized eigenvalue problem
 Matrix types (see DCHKGG for details):
 Special Matrices:                       (J'=transposed Jordan block)
   1=(0,0)  2=(I,0)  3=(0,I)  4=(I,I)  5=(J',J')  6=(diag(J',I), diag(I,J'))
 Diagonal Matrices:  ( D=diag(0,1,2,...) )
   7=(D,I)   9=(large*D, small*I)  11=(large*I, small*D)  13=(large*D, large*I)
   8=(I,D)  10=(small*D, large*I)  12=(small*I, large*D)  14=(small*D, small*I)
  15=(D, reversed D)
 Matrices Rotated by Random Orthogonal Matrices U, V:
  16=Transposed Jordan Blocks             19=geometric alpha, beta=0,1
  17=arithm. alpha&beta                   20=arithmetic alpha, beta=0,1
  18=clustered alpha, beta=0,1            21=random alpha, beta=0,1
 Large & Small Matrices:
  22=(large, small)   23=(small,large)    24=(small,small)    25=(large,large)
  26=random O(1) matrices.
 
 Tests performed:   (H is Hessenberg, S is Schur, B, T, P are triangular,
                    U, V, Q, and Z are orthogonal, l and r are the
                    appropriate left and right eigenvectors, resp., a is
                    alpha, b is beta, and ' means transpose.)
 1 = | A - U H V' | / ( |A| n ulp )      2 = | B - U T V' | / ( |B| n ulp )
 3 = | I - UU' | / ( n ulp )             4 = | I - VV' | / ( n ulp )
 5 = | H - Q S Z' | / ( |H| n ulp )      6 = | T - Q P Z' | / ( |T| n ulp )
 7 = | I - QQ' | / ( n ulp )             8 = | I - ZZ' | / ( n ulp )
 9 = max | ( b S - a P )' l | / const.  10 = max | ( b H - a T )' l | / const.
 11= max | ( b S - a P ) r | / const.   12 = max | ( b H - a T ) r | / const.
 
 Matrix order=   16, type=18, seed= 740,2515,3243,3753, result  5 is 4.504E+15
 DGG:    1 out of  2177 tests failed to pass the threshold
 *** Error code from DCHKGG =    9
 
 All tests for DGG drivers  passed the threshold (  1274 tests run)

  ----- Date reported: May, 1999

 =======================================================================
 =======================================================================
  Intel Pentium II 300MHz
  RedHat Linux 2.2.5-15
  g77 (version egcs-2.91.66)

  LAPACK, version 3.0 + UPDATE

  FORTRAN  = g77
  OPTS     = -funroll-all-loops -fno-f2c -O3
  DRVOPTS  = $(OPTS)
  NOOPT    =
  LOADER   = g77
  LOADOPTS = $(OPTS)

  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = ranlib

  BLASLIB  =  Fortran 77 BLAS

 Test status: Expected failures in _gd.out;
              Failure in cgbak.out (under investigation);
              Failures in ssep.out/csep.out (under investigation);

 ---------
 cgbak.out
 ---------

 .. test output of CGGBAK .. 
 value of largest test error                  =   0.796E+04
 example number where CGGBAL info is not 0    =   0
 example number where CGGBAK(L) info is not 0 =   0
 example number where CGGBAK(R) info is not 0 =   0
 example number having largest error          =   5
 number of examples where info is not 0       =   0
 total number of examples tested              =  10


 End of tests
 Total time used =         0.04 seconds

 --------
 ssep.out
 --------

 SEP:  NB =   3, NBMIN =   2, NX =   9

 SST -- Real Symmetric eigenvalue problem
 Matrix types (see SCHKST for details):

 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Symmetric Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 16=Positive definite, evenly spaced eigenvalues
 17=Positive definite, geometrically spaced eigenvlaues
 18=Positive definite, clustered eigenvalues
 19=Positive definite, small evenly spaced eigenvalues
 20=Positive definite, large evenly spaced eigenvalues
 21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues

Test performed:  see SCHKST for details.

 N=   20, seed= 443,2933, 429,1581, type  9, test(35)= 0.224E+05
 N=   20, seed= 443,2933, 429,1581, type  9, test(36)= 0.207E+07
 SST:    2 out of  4662 tests failed to pass the threshold

 --------
 csep.out
 --------

 SEP:  NB =   3, NBMIN =   2, NX =   9

 CST -- Complex Hermitian eigenvalue problem
 Matrix types (see CCHKST for details):

 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Hermitian Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 16=Positive definite, evenly spaced eigenvalues
 17=Positive definite, geometrically spaced eigenvlaues
 18=Positive definite, clustered eigenvalues
 19=Positive definite, small evenly spaced eigenvalues
 20=Positive definite, large evenly spaced eigenvalues
 21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues

Test performed:  see CCHKST for details.

 Matrix order=   20, type= 9, seed=1052,3651,3662,3633, result  35 is   88.19
 Matrix order=   20, type= 9, seed=1052,3651,3662,3633, result  36 is 2616.94
 CST:    2 out of  4662 tests failed to pass the threshold

 CST -- Complex Hermitian eigenvalue problem
 Matrix types (see xDRVST for details):

 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Hermitian Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.

 Tests performed:  See cdrvst.f
 Matrix order=   20, type= 9, seed=1494,3156,1807,2209, result  46 is 8.389E+06
 Matrix order=   20, type= 9, seed=1494,3156,1807,2209, result  47 is 8.389E+06
 CST drivers:      2 out of  11664 tests failed to pass the threshold

  ----- Date reported: November, 1999

 =======================================================================
 =======================================================================
  Intel PentiumII PC
  OS:  Linux (SuSE 6.1)
  COMPILER:  Portland Group pgf77, version 3.0
  COMPILER OPTIONS:  -tp p6 -pc 64 -mp -O2 -Munroll
  BLAS:  Optimized BLAS for PentiumII/Pro, obtained from
         http://www.cs.utk.edu/~ghenry/distrib/

  LAPACK, version 3.0

  Test status: Expected failures in _gd.out;

  ----- Date reported: October, 1999

 =======================================================================
 =======================================================================
 Intel Pentium PPro
 OS:  Windows NT 4.0 
 COMPILER:  Watcom Fortran 77/32 Compiler Version 11.0

 LAPACK, version 3.0

 FORTRAN  = wfc386
 OPTS     = -EXP -NOER -NOR
 DRVOPTS  = -EXP -NOER -NOR
 NOOPT    = -EXP -NOER -NOR
 LOADER   = wlink
 LOADOPTS =

 ARCH     = wlib
 ARCHFLAGS= -b -fa
 RANLIB   = echo

 BLASLIB  = ..\..\blas_win32.lib
         (Fortran 77 reference implementation)

 Notes:

 (1) separate LAPACK distribution file:
     http://www.netlib.org/lapack/lapack-pc-wfc.zip
 
 (2) use CLOCK() for second.f and dsecnd.f

 (3) Set ILAENV=0 for ISPEC=10 and ISPEC=11 in lapack\src\ilaenv.f, as
    well as the specialized versions of ILAENV in testing\lin\, testing\eig\.
 
 Test status: Expected failures in _gd.out;
 
  ----- Date reported: August, 1999
  
 =======================================================================
 =======================================================================
 Intel Pentium PPro
 OS:  Windows NT 4.0 
 COMPILER: Digital Fortran

 LAPACK, version 3.0 + UPDATES

 FORTRAN  = df
 OPTS     = -optimize:2
 DRVOPTS  = $(OPTS)
 NOOPT    = -optimize:0
 LOADER   = $(FORTRAN)
 LOADOPTS =
 ARCH     = lib
 ARCHFLAGS= -out:
 RANLIB   = echo

 BLASLIB  = ..\..\blas_win32.lib
         (Fortran 77 reference implementation)

 Notes:
 
 (1) separate LAPACK distribution file:
     http://www.netlib.org/lapack/lapack-pc-df.zip
 
 (2) use SECNDS() for second.f and dsecnd.f

 (3) Set ILAENV=0 for ISPEC=10 and ISPEC=11 in lapack\src\ilaenv.f, as
    well as the specialized versions of ILAENV in testing\lin\, testing\eig\.
 
 Test status: Expected failures in _gd.out;
 
  ----- Date reported: August, 1999
  
 =======================================================================
 =======================================================================
  SGI Indigo, IRIX Release 6.5, IP28, f77, MIPSpro version 7.2.1

  LAPACK, version 3.0

  FORTRAN  = f77
  OPTS     = -O3 -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
  DRVOPTS  = $(OPTS) -static
  NOOPT    = -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
  LOADER   = f77
  LOADOPTS = -O3 -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON

  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = echo

  BLASLIB  = -lblas

  BLAS: -lblas (bug in SDOT, so must link with Fortran 77 SDOT)
 
  Notes: 
  (1) Set SHELL = /sbin/sh in make.inc.

  (2) Compiler options -trapuv and -OPT:IEEE_NaN_inf=ON cannot
      be used together. 

  Test status:  Expected failures in _gd.out;
                Failures in stest.out, ssep.out and zsep.out.

 ---------
 stest.out
 ---------

 SLS:  Least squares driver routines
 Matrix types (1-3: full rank, 4-6: rank deficient):
    1 and 4. Normal scaling
    2 and 5. Scaled near overflow
    3 and 6. Scaled near underflow
 Test ratios:
    (1-2: SGELS, 3-6: SGELSX, 7-10: SGELSY, 11-14: SGELSS, 15-18: SGELSD)
    1: norm( B - A * X )   / ( max(M,N) * norm(A) * norm(X) * EPS )
    2: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
       if TRANS='N' and M.GE.N or TRANS='T' and M.LT.N, otherwise
       check if X is in the row space of A or A' (overdetermined case)
    3: norm(svd(A)-svd(R)) / ( min(M,N) * norm(svd(R)) * EPS )
    4: norm( B - A * X )   / ( max(M,N) * norm(A) * norm(X) * EPS )
    5: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
    6: Check if X is in the row space of A or A'
    7-10: same as 3-6    11-14: same as 3-6    15-18: same as 3-6
 Messages:
 TRANS='N', M=   16, N=    1, NRHS=  15, NB=  20, type 3, test( 1)=  91.327
 TRANS='T', M=   16, N=    2, NRHS=  15, NB=   3, type 3, test( 1)=  47.908
 SLS drivers:      2 out of  65268 tests failed to pass the threshold

 --------
 ssep.out
 --------

 SST -- Real Symmetric eigenvalue problem
 Matrix types (see xDRVST for details):
 
 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Symmetric Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 
 Tests performed:  See sdrvst.f
 Matrix order=   40, type= 9, seed= 905, 436,1903, 257, result  71 is 4.204E+05
 SST drivers:      1 out of  14256 tests failed to pass the threshold

 --------
 zsep.out
 --------

 ZST -- Complex Hermitian eigenvalue problem
 Matrix types (see ZCHKST for details):
 
 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Hermitian Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 16=Positive definite, evenly spaced eigenvalues
 17=Positive definite, geometrically spaced eigenvlaues
 18=Positive definite, clustered eigenvalues
 19=Positive definite, small evenly spaced eigenvalues
 20=Positive definite, large evenly spaced eigenvalues
 21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues
 
Test performed:  see ZCHKST for details.
 
 Matrix order=   40, type= 9, seed= 869,2319,1455, 761, result  35 is 9.007D+15
 Matrix order=   40, type= 9, seed= 869,2319,1455, 761, result  36 is 9.007D+15
 ZST:    2 out of  4662 tests failed to pass the threshold
 
  ----- Date reported: April, 1999
  
  =======================================================================
  =======================================================================
  SGI Octane, IRIX Release 6.5, R12000 IP30, f77, MIPSpro version 7.3.0

  LAPACK, version 3.0 + update

  FORTRAN  = f77
  OPTS     = -g  -DEBUG:subscript_check=ON -OPT:IEEE_NaN_inf=ON
  DRVOPTS  = $(OPTS) -static -TENV:large_GOT:ON
  NOOPT    = -g  -DEBUG:subscript_check=ON -OPT:IEEE_NaN_inf=ON
  LOADER   = f77
  LOADOPTS = -g -DEBUG:subscript_check=ON -OPT:IEEE_NaN_inf=ON
  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = echo

  BLASLIB  = -lblas

  Notes: 
  (1) Set SHELL = /sbin/sh in make.inc.

  (2) Compiler options -trapuv and -OPT:IEEE_NaN_inf=ON cannot
      be used together.   And it seems that optimization also
      disables -OPT:IEEE_NaN_inf=ON, as the LAPACK/INSTALL/tstieee
      test fails if both are used. 

  Test status:  Expected failures in _gd.out;
                Minor failures (SPB and SLS) in stest.out;
                Minor failures in ssvd.out;
                Failures in ssep.out (under investigation);
                Failure in cgbak.out (under investigation);

 ---------
 stest.out
 ---------

 SPB:  Symmetric positive definite band matrices
 Matrix types:
    1. Random, CNDNUM = 2              5. Random, CNDNUM = sqrt(0.1/EPS)
   *2. First row and column zero       6. Random, CNDNUM = 0.1/EPS
   *3. Last row and column zero        7. Scaled near underflow
   *4. Middle row and column zero      8. Scaled near overflow
   (* - tests error exits from SPBTRF, no test ratios are computed)
 Test ratios:
    1: norm( U' * U - A ) / ( N * norm(A) * EPS ), or
       norm( L * L' - A ) / ( N * norm(A) * EPS )
    2: norm( B - A * X )  / ( norm(A) * norm(X) * EPS )
    3: norm( X - XACT )   / ( norm(XACT) * CNDNUM * EPS )
    4: norm( X - XACT )   / ( norm(XACT) * CNDNUM * EPS ), refined
    5: norm( X - XACT )   / ( norm(XACT) * (error bound) )
    6: (backward error)   / EPS
    7: RCOND * CNDNUM - 1.0
 Messages:
 UPLO='L', N=   50, KD=   37, NRHS= 15, type  7, test( 3) =   39.913
 SPB:      1 out of   3458 tests failed to pass the threshold

 SLS:  Least squares driver routines
 Matrix types (1-3: full rank, 4-6: rank deficient):
    1 and 4. Normal scaling
    2 and 5. Scaled near overflow
    3 and 6. Scaled near underflow
 Test ratios:
    (1-2: SGELS, 3-6: SGELSX, 7-10: SGELSY, 11-14: SGELSS, 15-18: SGELSD)
    1: norm( B - A * X )   / ( max(M,N) * norm(A) * norm(X) * EPS )
    2: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
       if TRANS='N' and M.GE.N or TRANS='T' and M.LT.N, otherwise
       check if X is in the row space of A or A' (overdetermined case)
    3: norm(svd(A)-svd(R)) / ( min(M,N) * norm(svd(R)) * EPS )
    4: norm( B - A * X )   / ( max(M,N) * norm(A) * norm(X) * EPS )
    5: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
    6: Check if X is in the row space of A or A'
    7-10: same as 3-6    11-14: same as 3-6    15-18: same as 3-6
 Messages:
 TRANS='T', M=   50, N=    1, NRHS=   2, NB=   3, type 3, test( 1)=  139.96
 TRANS='T', M=   50, N=    1, NRHS=  15, NB=   3, type 3, test( 1)=  1235.6
 TRANS='T', M=   50, N=    1, NRHS=  15, NB=   3, type 3, test( 1)=  91.860
 SLS drivers:      3 out of  65268 tests failed to pass the threshold

 --------
 ssep.out
 --------

 SEP:  NB =   3, NBMIN =   2, NX =   9

 SST -- Real Symmetric eigenvalue problem
 Matrix types (see SCHKST for details): 

 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Symmetric Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 16=Positive definite, evenly spaced eigenvalues
 17=Positive definite, geometrically spaced eigenvlaues
 18=Positive definite, clustered eigenvalues
 19=Positive definite, small evenly spaced eigenvalues
 20=Positive definite, large evenly spaced eigenvalues
 21=Diagonally dominant tridiagonal, geometrically spaced eigenvalues

Test performed:  see SCHKST for details.

 N=   20, seed= 443,2933, 429,1581, type  9, test(35)= 0.681E+04
 N=   20, seed= 443,2933, 429,1581, type  9, test(36)= 0.195E+07
 SST:    2 out of  4662 tests failed to pass the threshold

 SST -- Real Symmetric eigenvalue problem
 Matrix types (see xDRVST for details): 

 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Symmetric Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.

 Tests performed:  See sdrvst.f
 Matrix order=   20, type= 9, seed=3966,3411,3597,2265, result  71 is  104.82
 Matrix order=   20, type= 9, seed=3966,3411,3597,2265, result  72 is   61.70
 SST drivers:      2 out of  14256 tests failed to pass the threshold

 ---------
 cgbak.out
 ---------

 .. test output of CGGBAK .. 
 value of largest test error                  =   0.796E+04
 example number where CGGBAL info is not 0    =   0
 example number where CGGBAK(L) info is not 0 =   0
 example number where CGGBAK(R) info is not 0 =   0
 example number having largest error          =   5
 number of examples where info is not 0       =   0
 total number of examples tested              =  10


 End of tests
 Total time used =         0.01 seconds

  ----- Date reported: December, 1999
  
  =======================================================================
  =======================================================================
  SGI O2K, IRIX Release 6.5, R12000 IP27, f77, MIPSpro version 7.2.1.2

  LAPACK, version 3.0

  FORTRAN  = f77
  OPTS     = -O3 -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
  DRVOPTS  = $(OPTS) -static
  NOOPT    = -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON
  LOADER   = f77
  LOADOPTS = -O3 -64 -mips4 -r10000 -OPT:IEEE_NaN_inf=ON

  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = echo

  BLASLIB  = -lblas

  Notes: 
  (1) Set SHELL = /sbin/sh in make.inc.

  (2) Compiler options -trapuv and -OPT:IEEE_NaN_inf=ON cannot
      be used together. 

  Test status:  Expected failures in _gd.out;
                Minor failures in stest.out;

 ---------
 stest.out
 ---------

 SLS:  Least squares driver routines
 Matrix types (1-3: full rank, 4-6: rank deficient):
    1 and 4. Normal scaling
    2 and 5. Scaled near overflow
    3 and 6. Scaled near underflow
 Test ratios:
    (1-2: SGELS, 3-6: SGELSX, 7-10: SGELSY, 11-14: SGELSS, 15-18: SGELSD)
    1: norm( B - A * X )   / ( max(M,N) * norm(A) * norm(X) * EPS )
    2: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
       if TRANS='N' and M.GE.N or TRANS='T' and M.LT.N, otherwise
       check if X is in the row space of A or A' (overdetermined case)
    3: norm(svd(A)-svd(R)) / ( min(M,N) * norm(svd(R)) * EPS )
    4: norm( B - A * X )   / ( max(M,N) * norm(A) * norm(X) * EPS )
    5: norm( (A*X-B)' *A ) / ( max(M,N,NRHS) * norm(A) * norm(B) * EPS )
    6: Check if X is in the row space of A or A'
    7-10: same as 3-6    11-14: same as 3-6    15-18: same as 3-6
 Messages:
 TRANS='N', M=   16, N=    1, NRHS=  15, NB=  20, type 3, test( 1)=  91.243
 TRANS='T', M=   16, N=    2, NRHS=  15, NB=   3, type 3, test( 1)=  47.768
 SLS drivers:      2 out of  65268 tests failed to pass the threshold

  ----- Date reported: May, 1999
  
  =======================================================================
  =======================================================================
 
  SUN Ultra-2, Solaris 2.7, f77 (SC 5.0)

  LAPACK, version 3.0 + patches from release_notes.html

  FORTRAN  = f77
  OPTS     = -f -dalign -native -xO5 -xarch=v8plusa
  DRVOPTS  = $(OPTS)
  NOOPT    = -f
  LOADER   = f77
  LOADOPTS = -f -dalign -native -xO5 -xarch=v8plusa

  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = echo

  BLASLIB     = -xlic_lib=sunperf

  BLAS:  Sun Performance Library BLAS

  Notes: 
  (1) If using "f90" instead of "f77", I strangely need to add
      "-lF77" to link line in LAPACK/TESTING/LIN/Makefile and
      LAPACK/TESTING/EIG/Makefile, or else the link fails with
      missing Fortran77 I/0 routines.

  (2) If using "f90" instead of "f77" compiler, you MUST additionally
      supply "-ftrap=%none".  The defaults for IEEE arithmetic
      using "f77" and "f90" are not the same!

      The f90 default is -ftrap=common.  (Note that the default with
      f77 is -ftrap=%none.)  See "man f90" for full details.

  Test status:  Expected failures in _gd.out;
                Failure in dsvd.out and zsvd.out;
                One minor failure in zsep.out;

  --------
  dsvd.out
  --------

 DBD -- Real Singular Value Decomposition
 Matrix types (see xCHKBD for details):
 Diagonal matrices:
   1: Zero                             5: Clustered entries
   2: Identity                         6: Large, evenly spaced entries
   3: Evenly spaced entries            7: Small, evenly spaced entries
   4: Geometrically spaced entries
 General matrices:
   8: Evenly spaced sing. vals.       12: Small, evenly spaced sing vals
   9: Geometrically spaced sing vals  13: Random, O(1) entries
  10: Clustered sing. vals.           14: Random, scaled near overflow
  11: Large, evenly spaced sing vals  15: Random, scaled near underflow

 Test ratios:  (B: bidiagonal, S: diagonal, Q, P, U, and V: orthogonal
                X: m x nrhs, Y = Q' X, and Z = U' Y)
   1: norm( A - Q B P' ) / ( norm(A) max(m,n) ulp )
   2: norm( I - Q' Q )   / ( m ulp )
   3: norm( I - P' P )   / ( n ulp )
   4: norm( B - U S V' ) / ( norm(B) min(m,n) ulp )
   5: norm( Y - U Z )    / ( norm(Z) max(min(m,n),k) ulp )
   6: norm( I - U' U )   / ( min(m,n) ulp )
   7: norm( I - V' V )   / ( min(m,n) ulp )
   8: Test ordering of S  (0 if nondecreasing, 1/ulp  otherwise)
   9: norm( S - S2 )     / ( norm(S) ulp ), where S2 is computed
                                            without computing U and V'
  10: Sturm sequence test (0 if sing. vals of B within THRESH of S)
  11: norm( A - (QU) S (V' P') ) / ( norm(A) max(m,n) ulp )
  12: norm( X - (QU) Z )         / ( |X| max(M,k) ulp )
  13: norm( I - (QU)'(QU) )      / ( M ulp )
  14: norm( I - (V' P') (P V) )  / ( N ulp )
 M=   40, N=   30, type 16, seed=3445,2073,3188, 129, test( 9)= 0.4502E+16
 DBD:      1 out of   5510 tests failed to pass the threshold

  ----- Date reported: April, 2000

  =======================================================================
  =======================================================================
 
  SUN Ultra-2, Solaris 2.5.1, f77 (SC 5.0)

  LAPACK, version 3.0

  FORTRAN  = f77
  OPTS     = -u -f -dalign -native -xO5 -xarch=v8plusa
  DRVOPTS  = $(OPTS)
  NOOPT    = -u -f
  LOADER   = f77
  LOADOPTS = -f -dalign -native -xO5 -xarch=v8plusa

  ARCH     = ar
  ARCHFLAGS= cr
  RANLIB   = echo

  BLASLIB     = -xlic_lib=sunperf

  BLAS:  Sun Performance Library BLAS

  Test status:  Expected failures in _gd.out;
                Two failures in ssep.out, one minor failure in zsep.out;
                IEEE warning exceptions of "Division by Zero" and
                "Invalid Operation" in ssep.out, dsep.out, csep.out,
                 and zsep.out, as a result of ILAENV IEEECK test;

  --------
  ssep.out
  --------

 SEP:  NB =   3, NBMIN =   2, NX =   0
 
 All tests for SST passed the threshold ( 4662 tests run)
 
 SST -- Real Symmetric eigenvalue problem
 Matrix types (see xDRVST for details):
 
 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Symmetric Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 
 Tests performed:  See sdrvst.f
 Matrix order=   20, type= 9, seed=2570,2010,1676,1489, result 124 is 1.577E+05
 Matrix order=   20, type= 9, seed=2570,2010,1676,1489, result 125 is 6.605E+05
 SST drivers:      2 out of  14256 tests failed to pass the threshold

  --------
  zsep.out
  --------

 SEP:  NB =   3, NBMIN =   2, NX =   9
 
 All tests for ZST passed the threshold ( 4662 tests run)
 
 ZST -- Complex Hermitian eigenvalue problem
 Matrix types (see xDRVST for details):
 
 Special Matrices:
  1=Zero matrix.                          5=Diagonal: clustered entries.
  2=Identity matrix.                      6=Diagonal: large, evenly spaced.
  3=Diagonal: evenly spaced entries.      7=Diagonal: small, evenly spaced.
  4=Diagonal: geometr. spaced entries.
 Dense Hermitian Matrices:
  8=Evenly spaced eigenvals.             12=Small, evenly spaced eigenvals.
  9=Geometrically spaced eigenvals.      13=Matrix with random O(1) entries.
 10=Clustered eigenvalues.               14=Matrix with large random entries.
 11=Large, evenly spaced eigenvals.      15=Matrix with small random entries.
 
 Tests performed:  See cdrvst.f
 Matrix order=   20, type=10, seed=3336, 516, 978,2569, result  71 is   59.27
 ZST drivers:      1 out of  11664 tests failed to pass the threshold

  ---- Date reported: April, 1999

  ======================================================================