| 12
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 
 |       SUBROUTINE CRQT01( M, N, A, AF, Q, R, LDA, TAU, WORK, LWORK,
     $                   RWORK, RESULT )
*
*  -- LAPACK test routine (version 3.1) --
*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd..
*     November 2006
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LWORK, M, N
*     ..
*     .. Array Arguments ..
      REAL               RESULT( * ), RWORK( * )
      COMPLEX            A( LDA, * ), AF( LDA, * ), Q( LDA, * ),
     $                   R( LDA, * ), TAU( * ), WORK( LWORK )
*     ..
*
*  Purpose
*  =======
*
*  CRQT01 tests CGERQF, which computes the RQ factorization of an m-by-n
*  matrix A, and partially tests CUNGRQ which forms the n-by-n
*  orthogonal matrix Q.
*
*  CRQT01 compares R with A*Q', and checks that Q is orthogonal.
*
*  Arguments
*  =========
*
*  M       (input) INTEGER
*          The number of rows of the matrix A.  M >= 0.
*
*  N       (input) INTEGER
*          The number of columns of the matrix A.  N >= 0.
*
*  A       (input) COMPLEX array, dimension (LDA,N)
*          The m-by-n matrix A.
*
*  AF      (output) COMPLEX array, dimension (LDA,N)
*          Details of the RQ factorization of A, as returned by CGERQF.
*          See CGERQF for further details.
*
*  Q       (output) COMPLEX array, dimension (LDA,N)
*          The n-by-n orthogonal matrix Q.
*
*  R       (workspace) COMPLEX array, dimension (LDA,max(M,N))
*
*  LDA     (input) INTEGER
*          The leading dimension of the arrays A, AF, Q and L.
*          LDA >= max(M,N).
*
*  TAU     (output) COMPLEX array, dimension (min(M,N))
*          The scalar factors of the elementary reflectors, as returned
*          by CGERQF.
*
*  WORK    (workspace) COMPLEX array, dimension (LWORK)
*
*  LWORK   (input) INTEGER
*          The dimension of the array WORK.
*
*  RWORK   (workspace) REAL array, dimension (max(M,N))
*
*  RESULT  (output) REAL array, dimension (2)
*          The test ratios:
*          RESULT(1) = norm( R - A*Q' ) / ( N * norm(A) * EPS )
*          RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*
*  =====================================================================
*
*     .. Parameters ..
      REAL               ZERO, ONE
      PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
      COMPLEX            ROGUE
      PARAMETER          ( ROGUE = ( -1.0E+10, -1.0E+10 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            INFO, MINMN
      REAL               ANORM, EPS, RESID
*     ..
*     .. External Functions ..
      REAL               CLANGE, CLANSY, SLAMCH
      EXTERNAL           CLANGE, CLANSY, SLAMCH
*     ..
*     .. External Subroutines ..
      EXTERNAL           CGEMM, CGERQF, CHERK, CLACPY, CLASET, CUNGRQ
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          CMPLX, MAX, MIN, REAL
*     ..
*     .. Scalars in Common ..
      CHARACTER*32       SRNAMT
*     ..
*     .. Common blocks ..
      COMMON             / SRNAMC / SRNAMT
*     ..
*     .. Executable Statements ..
*
      MINMN = MIN( M, N )
      EPS = SLAMCH( 'Epsilon' )
*
*     Copy the matrix A to the array AF.
*
      CALL CLACPY( 'Full', M, N, A, LDA, AF, LDA )
*
*     Factorize the matrix A in the array AF.
*
      SRNAMT = 'CGERQF'
      CALL CGERQF( M, N, AF, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy details of Q
*
      CALL CLASET( 'Full', N, N, ROGUE, ROGUE, Q, LDA )
      IF( M.LE.N ) THEN
         IF( M.GT.0 .AND. M.LT.N )
     $      CALL CLACPY( 'Full', M, N-M, AF, LDA, Q( N-M+1, 1 ), LDA )
         IF( M.GT.1 )
     $      CALL CLACPY( 'Lower', M-1, M-1, AF( 2, N-M+1 ), LDA,
     $                   Q( N-M+2, N-M+1 ), LDA )
      ELSE
         IF( N.GT.1 )
     $      CALL CLACPY( 'Lower', N-1, N-1, AF( M-N+2, 1 ), LDA,
     $                   Q( 2, 1 ), LDA )
      END IF
*
*     Generate the n-by-n matrix Q
*
      SRNAMT = 'CUNGRQ'
      CALL CUNGRQ( N, N, MINMN, Q, LDA, TAU, WORK, LWORK, INFO )
*
*     Copy R
*
      CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), R, LDA )
      IF( M.LE.N ) THEN
         IF( M.GT.0 )
     $      CALL CLACPY( 'Upper', M, M, AF( 1, N-M+1 ), LDA,
     $                   R( 1, N-M+1 ), LDA )
      ELSE
         IF( M.GT.N .AND. N.GT.0 )
     $      CALL CLACPY( 'Full', M-N, N, AF, LDA, R, LDA )
         IF( N.GT.0 )
     $      CALL CLACPY( 'Upper', N, N, AF( M-N+1, 1 ), LDA,
     $                   R( M-N+1, 1 ), LDA )
      END IF
*
*     Compute R - A*Q'
*
      CALL CGEMM( 'No transpose', 'Conjugate transpose', M, N, N,
     $            CMPLX( -ONE ), A, LDA, Q, LDA, CMPLX( ONE ), R, LDA )
*
*     Compute norm( R - Q'*A ) / ( N * norm(A) * EPS ) .
*
      ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
      RESID = CLANGE( '1', M, N, R, LDA, RWORK )
      IF( ANORM.GT.ZERO ) THEN
         RESULT( 1 ) = ( ( RESID / REAL( MAX( 1, N ) ) ) / ANORM ) / EPS
      ELSE
         RESULT( 1 ) = ZERO
      END IF
*
*     Compute I - Q*Q'
*
      CALL CLASET( 'Full', N, N, CMPLX( ZERO ), CMPLX( ONE ), R, LDA )
      CALL CHERK( 'Upper', 'No transpose', N, N, -ONE, Q, LDA, ONE, R,
     $            LDA )
*
*     Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
      RESID = CLANSY( '1', 'Upper', N, R, LDA, RWORK )
*
      RESULT( 2 ) = ( RESID / REAL( MAX( 1, N ) ) ) / EPS
*
      RETURN
*
*     End of CRQT01
*
      END
 |