1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442
|
*> \brief \b CHER2K
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* .. Scalar Arguments ..
* COMPLEX ALPHA
* REAL BETA
* INTEGER K,LDA,LDB,LDC,N
* CHARACTER TRANS,UPLO
* ..
* .. Array Arguments ..
* COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHER2K performs one of the hermitian rank 2k operations
*>
*> C := alpha*A*B**H + conjg( alpha )*B*A**H + beta*C,
*>
*> or
*>
*> C := alpha*A**H*B + conjg( alpha )*B**H*A + beta*C,
*>
*> where alpha and beta are scalars with beta real, C is an n by n
*> hermitian matrix and A and B are n by k matrices in the first case
*> and k by n matrices in the second case.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the array C is to be referenced as
*> follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of C
*> is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of C
*> is to be referenced.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the operation to be performed as
*> follows:
*>
*> TRANS = 'N' or 'n' C := alpha*A*B**H +
*> conjg( alpha )*B*A**H +
*> beta*C.
*>
*> TRANS = 'C' or 'c' C := alpha*A**H*B +
*> conjg( alpha )*B**H*A +
*> beta*C.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix C. N must be
*> at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> On entry with TRANS = 'N' or 'n', K specifies the number
*> of columns of the matrices A and B, and on entry with
*> TRANS = 'C' or 'c', K specifies the number of rows of the
*> matrices A and B. K must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array of DIMENSION ( LDA, ka ), where ka is
*> k when TRANS = 'N' or 'n', and is n otherwise.
*> Before entry with TRANS = 'N' or 'n', the leading n by k
*> part of the array A must contain the matrix A, otherwise
*> the leading k by n part of the array A must contain the
*> matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. When TRANS = 'N' or 'n'
*> then LDA must be at least max( 1, n ), otherwise LDA must
*> be at least max( 1, k ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array of DIMENSION ( LDB, kb ), where kb is
*> k when TRANS = 'N' or 'n', and is n otherwise.
*> Before entry with TRANS = 'N' or 'n', the leading n by k
*> part of the array B must contain the matrix B, otherwise
*> the leading k by n part of the array B must contain the
*> matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> On entry, LDB specifies the first dimension of B as declared
*> in the calling (sub) program. When TRANS = 'N' or 'n'
*> then LDB must be at least max( 1, n ), otherwise LDB must
*> be at least max( 1, k ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is REAL
*> On entry, BETA specifies the scalar beta.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array of DIMENSION ( LDC, n ).
*> Before entry with UPLO = 'U' or 'u', the leading n by n
*> upper triangular part of the array C must contain the upper
*> triangular part of the hermitian matrix and the strictly
*> lower triangular part of C is not referenced. On exit, the
*> upper triangular part of the array C is overwritten by the
*> upper triangular part of the updated matrix.
*> Before entry with UPLO = 'L' or 'l', the leading n by n
*> lower triangular part of the array C must contain the lower
*> triangular part of the hermitian matrix and the strictly
*> upper triangular part of C is not referenced. On exit, the
*> lower triangular part of the array C is overwritten by the
*> lower triangular part of the updated matrix.
*> Note that the imaginary parts of the diagonal elements need
*> not be set, they are assumed to be zero, and on exit they
*> are set to zero.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> On entry, LDC specifies the first dimension of C as declared
*> in the calling (sub) program. LDC must be at least
*> max( 1, n ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_blas_level3
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 3 Blas routine.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*>
*> -- Modified 8-Nov-93 to set C(J,J) to REAL( C(J,J) ) when BETA = 1.
*> Ed Anderson, Cray Research Inc.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE CHER2K(UPLO,TRANS,N,K,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* -- Reference BLAS level3 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
COMPLEX ALPHA
REAL BETA
INTEGER K,LDA,LDB,LDC,N
CHARACTER TRANS,UPLO
* ..
* .. Array Arguments ..
COMPLEX A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG,MAX,REAL
* ..
* .. Local Scalars ..
COMPLEX TEMP1,TEMP2
INTEGER I,INFO,J,L,NROWA
LOGICAL UPPER
* ..
* .. Parameters ..
REAL ONE
PARAMETER (ONE=1.0E+0)
COMPLEX ZERO
PARAMETER (ZERO= (0.0E+0,0.0E+0))
* ..
*
* Test the input parameters.
*
IF (LSAME(TRANS,'N')) THEN
NROWA = N
ELSE
NROWA = K
END IF
UPPER = LSAME(UPLO,'U')
*
INFO = 0
IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
INFO = 1
ELSE IF ((.NOT.LSAME(TRANS,'N')) .AND.
+ (.NOT.LSAME(TRANS,'C'))) THEN
INFO = 2
ELSE IF (N.LT.0) THEN
INFO = 3
ELSE IF (K.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 7
ELSE IF (LDB.LT.MAX(1,NROWA)) THEN
INFO = 9
ELSE IF (LDC.LT.MAX(1,N)) THEN
INFO = 12
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('CHER2K',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((N.EQ.0) .OR. (((ALPHA.EQ.ZERO).OR.
+ (K.EQ.0)).AND. (BETA.EQ.ONE))) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
IF (UPPER) THEN
IF (BETA.EQ.REAL(ZERO)) THEN
DO 20 J = 1,N
DO 10 I = 1,J
C(I,J) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1,N
DO 30 I = 1,J - 1
C(I,J) = BETA*C(I,J)
30 CONTINUE
C(J,J) = BETA*REAL(C(J,J))
40 CONTINUE
END IF
ELSE
IF (BETA.EQ.REAL(ZERO)) THEN
DO 60 J = 1,N
DO 50 I = J,N
C(I,J) = ZERO
50 CONTINUE
60 CONTINUE
ELSE
DO 80 J = 1,N
C(J,J) = BETA*REAL(C(J,J))
DO 70 I = J + 1,N
C(I,J) = BETA*C(I,J)
70 CONTINUE
80 CONTINUE
END IF
END IF
RETURN
END IF
*
* Start the operations.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form C := alpha*A*B**H + conjg( alpha )*B*A**H +
* C.
*
IF (UPPER) THEN
DO 130 J = 1,N
IF (BETA.EQ.REAL(ZERO)) THEN
DO 90 I = 1,J
C(I,J) = ZERO
90 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 100 I = 1,J - 1
C(I,J) = BETA*C(I,J)
100 CONTINUE
C(J,J) = BETA*REAL(C(J,J))
ELSE
C(J,J) = REAL(C(J,J))
END IF
DO 120 L = 1,K
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(B(J,L))
TEMP2 = CONJG(ALPHA*A(J,L))
DO 110 I = 1,J - 1
C(I,J) = C(I,J) + A(I,L)*TEMP1 +
+ B(I,L)*TEMP2
110 CONTINUE
C(J,J) = REAL(C(J,J)) +
+ REAL(A(J,L)*TEMP1+B(J,L)*TEMP2)
END IF
120 CONTINUE
130 CONTINUE
ELSE
DO 180 J = 1,N
IF (BETA.EQ.REAL(ZERO)) THEN
DO 140 I = J,N
C(I,J) = ZERO
140 CONTINUE
ELSE IF (BETA.NE.ONE) THEN
DO 150 I = J + 1,N
C(I,J) = BETA*C(I,J)
150 CONTINUE
C(J,J) = BETA*REAL(C(J,J))
ELSE
C(J,J) = REAL(C(J,J))
END IF
DO 170 L = 1,K
IF ((A(J,L).NE.ZERO) .OR. (B(J,L).NE.ZERO)) THEN
TEMP1 = ALPHA*CONJG(B(J,L))
TEMP2 = CONJG(ALPHA*A(J,L))
DO 160 I = J + 1,N
C(I,J) = C(I,J) + A(I,L)*TEMP1 +
+ B(I,L)*TEMP2
160 CONTINUE
C(J,J) = REAL(C(J,J)) +
+ REAL(A(J,L)*TEMP1+B(J,L)*TEMP2)
END IF
170 CONTINUE
180 CONTINUE
END IF
ELSE
*
* Form C := alpha*A**H*B + conjg( alpha )*B**H*A +
* C.
*
IF (UPPER) THEN
DO 210 J = 1,N
DO 200 I = 1,J
TEMP1 = ZERO
TEMP2 = ZERO
DO 190 L = 1,K
TEMP1 = TEMP1 + CONJG(A(L,I))*B(L,J)
TEMP2 = TEMP2 + CONJG(B(L,I))*A(L,J)
190 CONTINUE
IF (I.EQ.J) THEN
IF (BETA.EQ.REAL(ZERO)) THEN
C(J,J) = REAL(ALPHA*TEMP1+
+ CONJG(ALPHA)*TEMP2)
ELSE
C(J,J) = BETA*REAL(C(J,J)) +
+ REAL(ALPHA*TEMP1+
+ CONJG(ALPHA)*TEMP2)
END IF
ELSE
IF (BETA.EQ.REAL(ZERO)) THEN
C(I,J) = ALPHA*TEMP1 + CONJG(ALPHA)*TEMP2
ELSE
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
+ CONJG(ALPHA)*TEMP2
END IF
END IF
200 CONTINUE
210 CONTINUE
ELSE
DO 240 J = 1,N
DO 230 I = J,N
TEMP1 = ZERO
TEMP2 = ZERO
DO 220 L = 1,K
TEMP1 = TEMP1 + CONJG(A(L,I))*B(L,J)
TEMP2 = TEMP2 + CONJG(B(L,I))*A(L,J)
220 CONTINUE
IF (I.EQ.J) THEN
IF (BETA.EQ.REAL(ZERO)) THEN
C(J,J) = REAL(ALPHA*TEMP1+
+ CONJG(ALPHA)*TEMP2)
ELSE
C(J,J) = BETA*REAL(C(J,J)) +
+ REAL(ALPHA*TEMP1+
+ CONJG(ALPHA)*TEMP2)
END IF
ELSE
IF (BETA.EQ.REAL(ZERO)) THEN
C(I,J) = ALPHA*TEMP1 + CONJG(ALPHA)*TEMP2
ELSE
C(I,J) = BETA*C(I,J) + ALPHA*TEMP1 +
+ CONJG(ALPHA)*TEMP2
END IF
END IF
230 CONTINUE
240 CONTINUE
END IF
END IF
*
RETURN
*
* End of CHER2K.
*
END
|