1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
*> \brief \b DSDOT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* DOUBLE PRECISION FUNCTION DSDOT(N,SX,INCX,SY,INCY)
*
* .. Scalar Arguments ..
* INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
* REAL SX(*),SY(*)
* ..
*
* AUTHORS
* =======
* Lawson, C. L., (JPL), Hanson, R. J., (SNLA),
* Kincaid, D. R., (U. of Texas), Krogh, F. T., (JPL)
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Compute the inner product of two vectors with extended
*> precision accumulation and result.
*>
*> Returns D.P. dot product accumulated in D.P., for S.P. SX and SY
*> DSDOT = sum for I = 0 to N-1 of SX(LX+I*INCX) * SY(LY+I*INCY),
*> where LX = 1 if INCX .GE. 0, else LX = 1+(1-N)*INCX, and LY is
*> defined in a similar way using INCY.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> number of elements in input vector(s)
*> \endverbatim
*>
*> \param[in] SX
*> \verbatim
*> SX is REAL array, dimension(N)
*> single precision vector with N elements
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> storage spacing between elements of SX
*> \endverbatim
*>
*> \param[in] SY
*> \verbatim
*> SY is REAL array, dimension(N)
*> single precision vector with N elements
*> \endverbatim
*>
*> \param[in] INCY
*> \verbatim
*> INCY is INTEGER
*> storage spacing between elements of SY
*> \endverbatim
*>
*> \result DSDOT
*> \verbatim
*> DSDOT is DOUBLE PRECISION
*> DSDOT double precision dot product (zero if N.LE.0)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_blas_level1
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*> \endverbatim
*
*> \par References:
* ================
*>
*> \verbatim
*>
*>
*> C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T.
*> Krogh, Basic linear algebra subprograms for Fortran
*> usage, Algorithm No. 539, Transactions on Mathematical
*> Software 5, 3 (September 1979), pp. 308-323.
*>
*> REVISION HISTORY (YYMMDD)
*>
*> 791001 DATE WRITTEN
*> 890831 Modified array declarations. (WRB)
*> 890831 REVISION DATE from Version 3.2
*> 891214 Prologue converted to Version 4.0 format. (BAB)
*> 920310 Corrected definition of LX in DESCRIPTION. (WRB)
*> 920501 Reformatted the REFERENCES section. (WRB)
*> 070118 Reformat to LAPACK style (JL)
*> \endverbatim
*>
* =====================================================================
DOUBLE PRECISION FUNCTION DSDOT(N,SX,INCX,SY,INCY)
*
* -- Reference BLAS level1 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INCX,INCY,N
* ..
* .. Array Arguments ..
REAL SX(*),SY(*)
* ..
*
* Authors:
* ========
* Lawson, C. L., (JPL), Hanson, R. J., (SNLA),
* Kincaid, D. R., (U. of Texas), Krogh, F. T., (JPL)
*
* =====================================================================
*
* .. Local Scalars ..
INTEGER I,KX,KY,NS
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
DSDOT = 0.0D0
IF (N.LE.0) RETURN
IF (INCX.EQ.INCY .AND. INCX.GT.0) THEN
*
* Code for equal, positive, non-unit increments.
*
NS = N*INCX
DO I = 1,NS,INCX
DSDOT = DSDOT + DBLE(SX(I))*DBLE(SY(I))
END DO
ELSE
*
* Code for unequal or nonpositive increments.
*
KX = 1
KY = 1
IF (INCX.LT.0) KX = 1 + (1-N)*INCX
IF (INCY.LT.0) KY = 1 + (1-N)*INCY
DO I = 1,N
DSDOT = DSDOT + DBLE(SX(KX))*DBLE(SY(KY))
KX = KX + INCX
KY = KY + INCY
END DO
END IF
RETURN
END
|