File: zrotg.f

package info (click to toggle)
lapack 3.4.1%2Bdfsg-1%2Bdeb70u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 103,172 kB
  • sloc: fortran: 469,422; ansic: 127,041; makefile: 3,817; python: 267; sh: 94
file content (75 lines) | stat: -rw-r--r-- 1,784 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
*> \brief \b ZROTG
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZROTG(CA,CB,C,S)
* 
*       .. Scalar Arguments ..
*       COMPLEX*16 CA,CB,S
*       DOUBLE PRECISION C
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*>    ZROTG determines a double complex Givens rotation.
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_blas_level1
*
*  =====================================================================
      SUBROUTINE ZROTG(CA,CB,C,S)
*
*  -- Reference BLAS level1 routine (version 3.4.0) --
*  -- Reference BLAS is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      COMPLEX*16 CA,CB,S
      DOUBLE PRECISION C
*     ..
*
*  =====================================================================
*
*     .. Local Scalars ..
      COMPLEX*16 ALPHA
      DOUBLE PRECISION NORM,SCALE
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC CDABS,DCMPLX,DCONJG,DSQRT
*     ..
      IF (CDABS(CA).EQ.0.0d0) THEN
         C = 0.0d0
         S = (1.0d0,0.0d0)
         CA = CB
      ELSE
         SCALE = CDABS(CA) + CDABS(CB)
         NORM = SCALE*DSQRT((CDABS(CA/DCMPLX(SCALE,0.0d0)))**2+
     $       (CDABS(CB/DCMPLX(SCALE,0.0d0)))**2)
         ALPHA = CA/CDABS(CA)
         C = CDABS(CA)/NORM
         S = ALPHA*DCONJG(CB)/NORM
         CA = ALPHA*NORM
      END IF
      RETURN
      END