1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369
|
*> \brief \b ZSYMM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* .. Scalar Arguments ..
* COMPLEX*16 ALPHA,BETA
* INTEGER LDA,LDB,LDC,M,N
* CHARACTER SIDE,UPLO
* ..
* .. Array Arguments ..
* COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZSYMM performs one of the matrix-matrix operations
*>
*> C := alpha*A*B + beta*C,
*>
*> or
*>
*> C := alpha*B*A + beta*C,
*>
*> where alpha and beta are scalars, A is a symmetric matrix and B and
*> C are m by n matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> On entry, SIDE specifies whether the symmetric matrix A
*> appears on the left or right in the operation as follows:
*>
*> SIDE = 'L' or 'l' C := alpha*A*B + beta*C,
*>
*> SIDE = 'R' or 'r' C := alpha*B*A + beta*C,
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the upper or lower
*> triangular part of the symmetric matrix A is to be
*> referenced as follows:
*>
*> UPLO = 'U' or 'u' Only the upper triangular part of the
*> symmetric matrix is to be referenced.
*>
*> UPLO = 'L' or 'l' Only the lower triangular part of the
*> symmetric matrix is to be referenced.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> On entry, M specifies the number of rows of the matrix C.
*> M must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the number of columns of the matrix C.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX*16
*> On entry, ALPHA specifies the scalar alpha.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is
*> m when SIDE = 'L' or 'l' and is n otherwise.
*> Before entry with SIDE = 'L' or 'l', the m by m part of
*> the array A must contain the symmetric matrix, such that
*> when UPLO = 'U' or 'u', the leading m by m upper triangular
*> part of the array A must contain the upper triangular part
*> of the symmetric matrix and the strictly lower triangular
*> part of A is not referenced, and when UPLO = 'L' or 'l',
*> the leading m by m lower triangular part of the array A
*> must contain the lower triangular part of the symmetric
*> matrix and the strictly upper triangular part of A is not
*> referenced.
*> Before entry with SIDE = 'R' or 'r', the n by n part of
*> the array A must contain the symmetric matrix, such that
*> when UPLO = 'U' or 'u', the leading n by n upper triangular
*> part of the array A must contain the upper triangular part
*> of the symmetric matrix and the strictly lower triangular
*> part of A is not referenced, and when UPLO = 'L' or 'l',
*> the leading n by n lower triangular part of the array A
*> must contain the lower triangular part of the symmetric
*> matrix and the strictly upper triangular part of A is not
*> referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> On entry, LDA specifies the first dimension of A as declared
*> in the calling (sub) program. When SIDE = 'L' or 'l' then
*> LDA must be at least max( 1, m ), otherwise LDA must be at
*> least max( 1, n ).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX*16 array of DIMENSION ( LDB, n ).
*> Before entry, the leading m by n part of the array B must
*> contain the matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> On entry, LDB specifies the first dimension of B as declared
*> in the calling (sub) program. LDB must be at least
*> max( 1, m ).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX*16
*> On entry, BETA specifies the scalar beta. When BETA is
*> supplied as zero then C need not be set on input.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX*16 array of DIMENSION ( LDC, n ).
*> Before entry, the leading m by n part of the array C must
*> contain the matrix C, except when beta is zero, in which
*> case C need not be set on entry.
*> On exit, the array C is overwritten by the m by n updated
*> matrix.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> On entry, LDC specifies the first dimension of C as declared
*> in the calling (sub) program. LDC must be at least
*> max( 1, m ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_blas_level3
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 3 Blas routine.
*>
*> -- Written on 8-February-1989.
*> Jack Dongarra, Argonne National Laboratory.
*> Iain Duff, AERE Harwell.
*> Jeremy Du Croz, Numerical Algorithms Group Ltd.
*> Sven Hammarling, Numerical Algorithms Group Ltd.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZSYMM(SIDE,UPLO,M,N,ALPHA,A,LDA,B,LDB,BETA,C,LDC)
*
* -- Reference BLAS level3 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
COMPLEX*16 ALPHA,BETA
INTEGER LDA,LDB,LDC,M,N
CHARACTER SIDE,UPLO
* ..
* .. Array Arguments ..
COMPLEX*16 A(LDA,*),B(LDB,*),C(LDC,*)
* ..
*
* =====================================================================
*
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Local Scalars ..
COMPLEX*16 TEMP1,TEMP2
INTEGER I,INFO,J,K,NROWA
LOGICAL UPPER
* ..
* .. Parameters ..
COMPLEX*16 ONE
PARAMETER (ONE= (1.0D+0,0.0D+0))
COMPLEX*16 ZERO
PARAMETER (ZERO= (0.0D+0,0.0D+0))
* ..
*
* Set NROWA as the number of rows of A.
*
IF (LSAME(SIDE,'L')) THEN
NROWA = M
ELSE
NROWA = N
END IF
UPPER = LSAME(UPLO,'U')
*
* Test the input parameters.
*
INFO = 0
IF ((.NOT.LSAME(SIDE,'L')) .AND. (.NOT.LSAME(SIDE,'R'))) THEN
INFO = 1
ELSE IF ((.NOT.UPPER) .AND. (.NOT.LSAME(UPLO,'L'))) THEN
INFO = 2
ELSE IF (M.LT.0) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (LDA.LT.MAX(1,NROWA)) THEN
INFO = 7
ELSE IF (LDB.LT.MAX(1,M)) THEN
INFO = 9
ELSE IF (LDC.LT.MAX(1,M)) THEN
INFO = 12
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('ZSYMM ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF ((M.EQ.0) .OR. (N.EQ.0) .OR.
+ ((ALPHA.EQ.ZERO).AND. (BETA.EQ.ONE))) RETURN
*
* And when alpha.eq.zero.
*
IF (ALPHA.EQ.ZERO) THEN
IF (BETA.EQ.ZERO) THEN
DO 20 J = 1,N
DO 10 I = 1,M
C(I,J) = ZERO
10 CONTINUE
20 CONTINUE
ELSE
DO 40 J = 1,N
DO 30 I = 1,M
C(I,J) = BETA*C(I,J)
30 CONTINUE
40 CONTINUE
END IF
RETURN
END IF
*
* Start the operations.
*
IF (LSAME(SIDE,'L')) THEN
*
* Form C := alpha*A*B + beta*C.
*
IF (UPPER) THEN
DO 70 J = 1,N
DO 60 I = 1,M
TEMP1 = ALPHA*B(I,J)
TEMP2 = ZERO
DO 50 K = 1,I - 1
C(K,J) = C(K,J) + TEMP1*A(K,I)
TEMP2 = TEMP2 + B(K,J)*A(K,I)
50 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
ELSE
C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
+ ALPHA*TEMP2
END IF
60 CONTINUE
70 CONTINUE
ELSE
DO 100 J = 1,N
DO 90 I = M,1,-1
TEMP1 = ALPHA*B(I,J)
TEMP2 = ZERO
DO 80 K = I + 1,M
C(K,J) = C(K,J) + TEMP1*A(K,I)
TEMP2 = TEMP2 + B(K,J)*A(K,I)
80 CONTINUE
IF (BETA.EQ.ZERO) THEN
C(I,J) = TEMP1*A(I,I) + ALPHA*TEMP2
ELSE
C(I,J) = BETA*C(I,J) + TEMP1*A(I,I) +
+ ALPHA*TEMP2
END IF
90 CONTINUE
100 CONTINUE
END IF
ELSE
*
* Form C := alpha*B*A + beta*C.
*
DO 170 J = 1,N
TEMP1 = ALPHA*A(J,J)
IF (BETA.EQ.ZERO) THEN
DO 110 I = 1,M
C(I,J) = TEMP1*B(I,J)
110 CONTINUE
ELSE
DO 120 I = 1,M
C(I,J) = BETA*C(I,J) + TEMP1*B(I,J)
120 CONTINUE
END IF
DO 140 K = 1,J - 1
IF (UPPER) THEN
TEMP1 = ALPHA*A(K,J)
ELSE
TEMP1 = ALPHA*A(J,K)
END IF
DO 130 I = 1,M
C(I,J) = C(I,J) + TEMP1*B(I,K)
130 CONTINUE
140 CONTINUE
DO 160 K = J + 1,N
IF (UPPER) THEN
TEMP1 = ALPHA*A(J,K)
ELSE
TEMP1 = ALPHA*A(K,J)
END IF
DO 150 I = 1,M
C(I,J) = C(I,J) + TEMP1*B(I,K)
150 CONTINUE
160 CONTINUE
170 CONTINUE
END IF
*
RETURN
*
* End of ZSYMM .
*
END
|