1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
|
*> \brief \b ZTPSV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
*
* .. Scalar Arguments ..
* INTEGER INCX,N
* CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
* COMPLEX*16 AP(*),X(*)
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZTPSV solves one of the systems of equations
*>
*> A*x = b, or A**T*x = b, or A**H*x = b,
*>
*> where b and x are n element vectors and A is an n by n unit, or
*> non-unit, upper or lower triangular matrix, supplied in packed form.
*>
*> No test for singularity or near-singularity is included in this
*> routine. Such tests must be performed before calling this routine.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> On entry, UPLO specifies whether the matrix is an upper or
*> lower triangular matrix as follows:
*>
*> UPLO = 'U' or 'u' A is an upper triangular matrix.
*>
*> UPLO = 'L' or 'l' A is a lower triangular matrix.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> On entry, TRANS specifies the equations to be solved as
*> follows:
*>
*> TRANS = 'N' or 'n' A*x = b.
*>
*> TRANS = 'T' or 't' A**T*x = b.
*>
*> TRANS = 'C' or 'c' A**H*x = b.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> On entry, DIAG specifies whether or not A is unit
*> triangular as follows:
*>
*> DIAG = 'U' or 'u' A is assumed to be unit triangular.
*>
*> DIAG = 'N' or 'n' A is not assumed to be unit
*> triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> On entry, N specifies the order of the matrix A.
*> N must be at least zero.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is COMPLEX*16 array of DIMENSION at least
*> ( ( n*( n + 1 ) )/2 ).
*> Before entry with UPLO = 'U' or 'u', the array AP must
*> contain the upper triangular matrix packed sequentially,
*> column by column, so that AP( 1 ) contains a( 1, 1 ),
*> AP( 2 ) and AP( 3 ) contain a( 1, 2 ) and a( 2, 2 )
*> respectively, and so on.
*> Before entry with UPLO = 'L' or 'l', the array AP must
*> contain the lower triangular matrix packed sequentially,
*> column by column, so that AP( 1 ) contains a( 1, 1 ),
*> AP( 2 ) and AP( 3 ) contain a( 2, 1 ) and a( 3, 1 )
*> respectively, and so on.
*> Note that when DIAG = 'U' or 'u', the diagonal elements of
*> A are not referenced, but are assumed to be unity.
*> \endverbatim
*>
*> \param[in,out] X
*> \verbatim
*> X is COMPLEX*16 array of dimension at least
*> ( 1 + ( n - 1 )*abs( INCX ) ).
*> Before entry, the incremented array X must contain the n
*> element right-hand side vector b. On exit, X is overwritten
*> with the solution vector x.
*> \endverbatim
*>
*> \param[in] INCX
*> \verbatim
*> INCX is INTEGER
*> On entry, INCX specifies the increment for the elements of
*> X. INCX must not be zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_blas_level2
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> Level 2 Blas routine.
*>
*> -- Written on 22-October-1986.
*> Jack Dongarra, Argonne National Lab.
*> Jeremy Du Croz, Nag Central Office.
*> Sven Hammarling, Nag Central Office.
*> Richard Hanson, Sandia National Labs.
*> \endverbatim
*>
* =====================================================================
SUBROUTINE ZTPSV(UPLO,TRANS,DIAG,N,AP,X,INCX)
*
* -- Reference BLAS level2 routine (version 3.4.0) --
* -- Reference BLAS is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INCX,N
CHARACTER DIAG,TRANS,UPLO
* ..
* .. Array Arguments ..
COMPLEX*16 AP(*),X(*)
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 ZERO
PARAMETER (ZERO= (0.0D+0,0.0D+0))
* ..
* .. Local Scalars ..
COMPLEX*16 TEMP
INTEGER I,INFO,IX,J,JX,K,KK,KX
LOGICAL NOCONJ,NOUNIT
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC DCONJG
* ..
*
* Test the input parameters.
*
INFO = 0
IF (.NOT.LSAME(UPLO,'U') .AND. .NOT.LSAME(UPLO,'L')) THEN
INFO = 1
ELSE IF (.NOT.LSAME(TRANS,'N') .AND. .NOT.LSAME(TRANS,'T') .AND.
+ .NOT.LSAME(TRANS,'C')) THEN
INFO = 2
ELSE IF (.NOT.LSAME(DIAG,'U') .AND. .NOT.LSAME(DIAG,'N')) THEN
INFO = 3
ELSE IF (N.LT.0) THEN
INFO = 4
ELSE IF (INCX.EQ.0) THEN
INFO = 7
END IF
IF (INFO.NE.0) THEN
CALL XERBLA('ZTPSV ',INFO)
RETURN
END IF
*
* Quick return if possible.
*
IF (N.EQ.0) RETURN
*
NOCONJ = LSAME(TRANS,'T')
NOUNIT = LSAME(DIAG,'N')
*
* Set up the start point in X if the increment is not unity. This
* will be ( N - 1 )*INCX too small for descending loops.
*
IF (INCX.LE.0) THEN
KX = 1 - (N-1)*INCX
ELSE IF (INCX.NE.1) THEN
KX = 1
END IF
*
* Start the operations. In this version the elements of AP are
* accessed sequentially with one pass through AP.
*
IF (LSAME(TRANS,'N')) THEN
*
* Form x := inv( A )*x.
*
IF (LSAME(UPLO,'U')) THEN
KK = (N* (N+1))/2
IF (INCX.EQ.1) THEN
DO 20 J = N,1,-1
IF (X(J).NE.ZERO) THEN
IF (NOUNIT) X(J) = X(J)/AP(KK)
TEMP = X(J)
K = KK - 1
DO 10 I = J - 1,1,-1
X(I) = X(I) - TEMP*AP(K)
K = K - 1
10 CONTINUE
END IF
KK = KK - J
20 CONTINUE
ELSE
JX = KX + (N-1)*INCX
DO 40 J = N,1,-1
IF (X(JX).NE.ZERO) THEN
IF (NOUNIT) X(JX) = X(JX)/AP(KK)
TEMP = X(JX)
IX = JX
DO 30 K = KK - 1,KK - J + 1,-1
IX = IX - INCX
X(IX) = X(IX) - TEMP*AP(K)
30 CONTINUE
END IF
JX = JX - INCX
KK = KK - J
40 CONTINUE
END IF
ELSE
KK = 1
IF (INCX.EQ.1) THEN
DO 60 J = 1,N
IF (X(J).NE.ZERO) THEN
IF (NOUNIT) X(J) = X(J)/AP(KK)
TEMP = X(J)
K = KK + 1
DO 50 I = J + 1,N
X(I) = X(I) - TEMP*AP(K)
K = K + 1
50 CONTINUE
END IF
KK = KK + (N-J+1)
60 CONTINUE
ELSE
JX = KX
DO 80 J = 1,N
IF (X(JX).NE.ZERO) THEN
IF (NOUNIT) X(JX) = X(JX)/AP(KK)
TEMP = X(JX)
IX = JX
DO 70 K = KK + 1,KK + N - J
IX = IX + INCX
X(IX) = X(IX) - TEMP*AP(K)
70 CONTINUE
END IF
JX = JX + INCX
KK = KK + (N-J+1)
80 CONTINUE
END IF
END IF
ELSE
*
* Form x := inv( A**T )*x or x := inv( A**H )*x.
*
IF (LSAME(UPLO,'U')) THEN
KK = 1
IF (INCX.EQ.1) THEN
DO 110 J = 1,N
TEMP = X(J)
K = KK
IF (NOCONJ) THEN
DO 90 I = 1,J - 1
TEMP = TEMP - AP(K)*X(I)
K = K + 1
90 CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
ELSE
DO 100 I = 1,J - 1
TEMP = TEMP - DCONJG(AP(K))*X(I)
K = K + 1
100 CONTINUE
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
END IF
X(J) = TEMP
KK = KK + J
110 CONTINUE
ELSE
JX = KX
DO 140 J = 1,N
TEMP = X(JX)
IX = KX
IF (NOCONJ) THEN
DO 120 K = KK,KK + J - 2
TEMP = TEMP - AP(K)*X(IX)
IX = IX + INCX
120 CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK+J-1)
ELSE
DO 130 K = KK,KK + J - 2
TEMP = TEMP - DCONJG(AP(K))*X(IX)
IX = IX + INCX
130 CONTINUE
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK+J-1))
END IF
X(JX) = TEMP
JX = JX + INCX
KK = KK + J
140 CONTINUE
END IF
ELSE
KK = (N* (N+1))/2
IF (INCX.EQ.1) THEN
DO 170 J = N,1,-1
TEMP = X(J)
K = KK
IF (NOCONJ) THEN
DO 150 I = N,J + 1,-1
TEMP = TEMP - AP(K)*X(I)
K = K - 1
150 CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
ELSE
DO 160 I = N,J + 1,-1
TEMP = TEMP - DCONJG(AP(K))*X(I)
K = K - 1
160 CONTINUE
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
END IF
X(J) = TEMP
KK = KK - (N-J+1)
170 CONTINUE
ELSE
KX = KX + (N-1)*INCX
JX = KX
DO 200 J = N,1,-1
TEMP = X(JX)
IX = KX
IF (NOCONJ) THEN
DO 180 K = KK,KK - (N- (J+1)),-1
TEMP = TEMP - AP(K)*X(IX)
IX = IX - INCX
180 CONTINUE
IF (NOUNIT) TEMP = TEMP/AP(KK-N+J)
ELSE
DO 190 K = KK,KK - (N- (J+1)),-1
TEMP = TEMP - DCONJG(AP(K))*X(IX)
IX = IX - INCX
190 CONTINUE
IF (NOUNIT) TEMP = TEMP/DCONJG(AP(KK-N+J))
END IF
X(JX) = TEMP
JX = JX - INCX
KK = KK - (N-J+1)
200 CONTINUE
END IF
END IF
END IF
*
RETURN
*
* End of ZTPSV .
*
END
|