1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083
|
*> \brief \b CBBCSD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CBBCSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cbbcsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cbbcsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cbbcsd.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
* THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
* V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
* B22D, B22E, RWORK, LRWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
* INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
* ..
* .. Array Arguments ..
* REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ),
* $ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
* $ PHI( * ), THETA( * ), RWORK( * )
* COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
* $ V2T( LDV2T, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CBBCSD computes the CS decomposition of a unitary matrix in
*> bidiagonal-block form,
*>
*>
*> [ B11 | B12 0 0 ]
*> [ 0 | 0 -I 0 ]
*> X = [----------------]
*> [ B21 | B22 0 0 ]
*> [ 0 | 0 0 I ]
*>
*> [ C | -S 0 0 ]
*> [ U1 | ] [ 0 | 0 -I 0 ] [ V1 | ]**H
*> = [---------] [---------------] [---------] .
*> [ | U2 ] [ S | C 0 0 ] [ | V2 ]
*> [ 0 | 0 0 I ]
*>
*> X is M-by-M, its top-left block is P-by-Q, and Q must be no larger
*> than P, M-P, or M-Q. (If Q is not the smallest index, then X must be
*> transposed and/or permuted. This can be done in constant time using
*> the TRANS and SIGNS options. See CUNCSD for details.)
*>
*> The bidiagonal matrices B11, B12, B21, and B22 are represented
*> implicitly by angles THETA(1:Q) and PHI(1:Q-1).
*>
*> The unitary matrices U1, U2, V1T, and V2T are input/output.
*> The input matrices are pre- or post-multiplied by the appropriate
*> singular vector matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOBU1
*> \verbatim
*> JOBU1 is CHARACTER
*> = 'Y': U1 is updated;
*> otherwise: U1 is not updated.
*> \endverbatim
*>
*> \param[in] JOBU2
*> \verbatim
*> JOBU2 is CHARACTER
*> = 'Y': U2 is updated;
*> otherwise: U2 is not updated.
*> \endverbatim
*>
*> \param[in] JOBV1T
*> \verbatim
*> JOBV1T is CHARACTER
*> = 'Y': V1T is updated;
*> otherwise: V1T is not updated.
*> \endverbatim
*>
*> \param[in] JOBV2T
*> \verbatim
*> JOBV2T is CHARACTER
*> = 'Y': V2T is updated;
*> otherwise: V2T is not updated.
*> \endverbatim
*>
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER
*> = 'T': X, U1, U2, V1T, and V2T are stored in row-major
*> order;
*> otherwise: X, U1, U2, V1T, and V2T are stored in column-
*> major order.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows and columns in X, the unitary matrix in
*> bidiagonal-block form.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of rows in the top-left block of X. 0 <= P <= M.
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is INTEGER
*> The number of columns in the top-left block of X.
*> 0 <= Q <= MIN(P,M-P,M-Q).
*> \endverbatim
*>
*> \param[in,out] THETA
*> \verbatim
*> THETA is REAL array, dimension (Q)
*> On entry, the angles THETA(1),...,THETA(Q) that, along with
*> PHI(1), ...,PHI(Q-1), define the matrix in bidiagonal-block
*> form. On exit, the angles whose cosines and sines define the
*> diagonal blocks in the CS decomposition.
*> \endverbatim
*>
*> \param[in,out] PHI
*> \verbatim
*> PHI is REAL array, dimension (Q-1)
*> The angles PHI(1),...,PHI(Q-1) that, along with THETA(1),...,
*> THETA(Q), define the matrix in bidiagonal-block form.
*> \endverbatim
*>
*> \param[in,out] U1
*> \verbatim
*> U1 is COMPLEX array, dimension (LDU1,P)
*> On entry, an LDU1-by-P matrix. On exit, U1 is postmultiplied
*> by the left singular vector matrix common to [ B11 ; 0 ] and
*> [ B12 0 0 ; 0 -I 0 0 ].
*> \endverbatim
*>
*> \param[in] LDU1
*> \verbatim
*> LDU1 is INTEGER
*> The leading dimension of the array U1.
*> \endverbatim
*>
*> \param[in,out] U2
*> \verbatim
*> U2 is COMPLEX array, dimension (LDU2,M-P)
*> On entry, an LDU2-by-(M-P) matrix. On exit, U2 is
*> postmultiplied by the left singular vector matrix common to
*> [ B21 ; 0 ] and [ B22 0 0 ; 0 0 I ].
*> \endverbatim
*>
*> \param[in] LDU2
*> \verbatim
*> LDU2 is INTEGER
*> The leading dimension of the array U2.
*> \endverbatim
*>
*> \param[in,out] V1T
*> \verbatim
*> V1T is COMPLEX array, dimension (LDV1T,Q)
*> On entry, a LDV1T-by-Q matrix. On exit, V1T is premultiplied
*> by the conjugate transpose of the right singular vector
*> matrix common to [ B11 ; 0 ] and [ B21 ; 0 ].
*> \endverbatim
*>
*> \param[in] LDV1T
*> \verbatim
*> LDV1T is INTEGER
*> The leading dimension of the array V1T.
*> \endverbatim
*>
*> \param[in,out] V2T
*> \verbatim
*> V2T is COMPLEX array, dimenison (LDV2T,M-Q)
*> On entry, a LDV2T-by-(M-Q) matrix. On exit, V2T is
*> premultiplied by the conjugate transpose of the right
*> singular vector matrix common to [ B12 0 0 ; 0 -I 0 ] and
*> [ B22 0 0 ; 0 0 I ].
*> \endverbatim
*>
*> \param[in] LDV2T
*> \verbatim
*> LDV2T is INTEGER
*> The leading dimension of the array V2T.
*> \endverbatim
*>
*> \param[out] B11D
*> \verbatim
*> B11D is REAL array, dimension (Q)
*> When CBBCSD converges, B11D contains the cosines of THETA(1),
*> ..., THETA(Q). If CBBCSD fails to converge, then B11D
*> contains the diagonal of the partially reduced top-left
*> block.
*> \endverbatim
*>
*> \param[out] B11E
*> \verbatim
*> B11E is REAL array, dimension (Q-1)
*> When CBBCSD converges, B11E contains zeros. If CBBCSD fails
*> to converge, then B11E contains the superdiagonal of the
*> partially reduced top-left block.
*> \endverbatim
*>
*> \param[out] B12D
*> \verbatim
*> B12D is REAL array, dimension (Q)
*> When CBBCSD converges, B12D contains the negative sines of
*> THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
*> B12D contains the diagonal of the partially reduced top-right
*> block.
*> \endverbatim
*>
*> \param[out] B12E
*> \verbatim
*> B12E is REAL array, dimension (Q-1)
*> When CBBCSD converges, B12E contains zeros. If CBBCSD fails
*> to converge, then B12E contains the subdiagonal of the
*> partially reduced top-right block.
*> \endverbatim
*>
*> \param[out] B21D
*> \verbatim
*> B21D is REAL array, dimension (Q)
*> When CBBCSD converges, B21D contains the negative sines of
*> THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
*> B21D contains the diagonal of the partially reduced bottom-left
*> block.
*> \endverbatim
*>
*> \param[out] B21E
*> \verbatim
*> B21E is REAL array, dimension (Q-1)
*> When CBBCSD converges, B21E contains zeros. If CBBCSD fails
*> to converge, then B21E contains the subdiagonal of the
*> partially reduced bottom-left block.
*> \endverbatim
*>
*> \param[out] B22D
*> \verbatim
*> B22D is REAL array, dimension (Q)
*> When CBBCSD converges, B22D contains the negative sines of
*> THETA(1), ..., THETA(Q). If CBBCSD fails to converge, then
*> B22D contains the diagonal of the partially reduced bottom-right
*> block.
*> \endverbatim
*>
*> \param[out] B22E
*> \verbatim
*> B22E is REAL array, dimension (Q-1)
*> When CBBCSD converges, B22E contains zeros. If CBBCSD fails
*> to converge, then B22E contains the subdiagonal of the
*> partially reduced bottom-right block.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LRWORK
*> \verbatim
*> LRWORK is INTEGER
*> The dimension of the array RWORK. LRWORK >= MAX(1,8*Q).
*>
*> If LRWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the RWORK array,
*> returns this value as the first entry of the work array, and
*> no error message related to LRWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: if CBBCSD did not converge, INFO specifies the number
*> of nonzero entries in PHI, and B11D, B11E, etc.,
*> contain the partially reduced matrix.
*> \endverbatim
*
*> \par Internal Parameters:
* =========================
*>
*> \verbatim
*> TOLMUL REAL, default = MAX(10,MIN(100,EPS**(-1/8)))
*> TOLMUL controls the convergence criterion of the QR loop.
*> Angles THETA(i), PHI(i) are rounded to 0 or PI/2 when they
*> are within TOLMUL*EPS of either bound.
*> \endverbatim
*
*> \par References:
* ================
*>
*> [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
*> Algorithms, 50(1):33-65, 2009.
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CBBCSD( JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS, M, P, Q,
$ THETA, PHI, U1, LDU1, U2, LDU2, V1T, LDV1T,
$ V2T, LDV2T, B11D, B11E, B12D, B12E, B21D, B21E,
$ B22D, B22E, RWORK, LRWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, TRANS
INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LRWORK, M, P, Q
* ..
* .. Array Arguments ..
REAL B11D( * ), B11E( * ), B12D( * ), B12E( * ),
$ B21D( * ), B21E( * ), B22D( * ), B22E( * ),
$ PHI( * ), THETA( * ), RWORK( * )
COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
$ V2T( LDV2T, * )
* ..
*
* ===================================================================
*
* .. Parameters ..
INTEGER MAXITR
PARAMETER ( MAXITR = 6 )
REAL HUNDRED, MEIGHTH, ONE, PIOVER2, TEN, ZERO
PARAMETER ( HUNDRED = 100.0E0, MEIGHTH = -0.125E0,
$ ONE = 1.0E0, PIOVER2 = 1.57079632679489662E0,
$ TEN = 10.0E0, ZERO = 0.0E0 )
COMPLEX NEGONECOMPLEX
PARAMETER ( NEGONECOMPLEX = (-1.0E0,0.0E0) )
* ..
* .. Local Scalars ..
LOGICAL COLMAJOR, LQUERY, RESTART11, RESTART12,
$ RESTART21, RESTART22, WANTU1, WANTU2, WANTV1T,
$ WANTV2T
INTEGER I, IMIN, IMAX, ITER, IU1CS, IU1SN, IU2CS,
$ IU2SN, IV1TCS, IV1TSN, IV2TCS, IV2TSN, J,
$ LRWORKMIN, LRWORKOPT, MAXIT, MINI
REAL B11BULGE, B12BULGE, B21BULGE, B22BULGE, DUMMY,
$ EPS, MU, NU, R, SIGMA11, SIGMA21,
$ TEMP, THETAMAX, THETAMIN, THRESH, TOL, TOLMUL,
$ UNFL, X1, X2, Y1, Y2
*
* .. External Subroutines ..
EXTERNAL CLASR, CSCAL, CSWAP, SLARTGP, SLARTGS, SLAS2,
$ XERBLA
* ..
* .. External Functions ..
REAL SLAMCH
LOGICAL LSAME
EXTERNAL LSAME, SLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, ATAN2, COS, MAX, MIN, SIN, SQRT
* ..
* .. Executable Statements ..
*
* Test input arguments
*
INFO = 0
LQUERY = LRWORK .EQ. -1
WANTU1 = LSAME( JOBU1, 'Y' )
WANTU2 = LSAME( JOBU2, 'Y' )
WANTV1T = LSAME( JOBV1T, 'Y' )
WANTV2T = LSAME( JOBV2T, 'Y' )
COLMAJOR = .NOT. LSAME( TRANS, 'T' )
*
IF( M .LT. 0 ) THEN
INFO = -6
ELSE IF( P .LT. 0 .OR. P .GT. M ) THEN
INFO = -7
ELSE IF( Q .LT. 0 .OR. Q .GT. M ) THEN
INFO = -8
ELSE IF( Q .GT. P .OR. Q .GT. M-P .OR. Q .GT. M-Q ) THEN
INFO = -8
ELSE IF( WANTU1 .AND. LDU1 .LT. P ) THEN
INFO = -12
ELSE IF( WANTU2 .AND. LDU2 .LT. M-P ) THEN
INFO = -14
ELSE IF( WANTV1T .AND. LDV1T .LT. Q ) THEN
INFO = -16
ELSE IF( WANTV2T .AND. LDV2T .LT. M-Q ) THEN
INFO = -18
END IF
*
* Quick return if Q = 0
*
IF( INFO .EQ. 0 .AND. Q .EQ. 0 ) THEN
LRWORKMIN = 1
RWORK(1) = LRWORKMIN
RETURN
END IF
*
* Compute workspace
*
IF( INFO .EQ. 0 ) THEN
IU1CS = 1
IU1SN = IU1CS + Q
IU2CS = IU1SN + Q
IU2SN = IU2CS + Q
IV1TCS = IU2SN + Q
IV1TSN = IV1TCS + Q
IV2TCS = IV1TSN + Q
IV2TSN = IV2TCS + Q
LRWORKOPT = IV2TSN + Q - 1
LRWORKMIN = LRWORKOPT
RWORK(1) = LRWORKOPT
IF( LRWORK .LT. LRWORKMIN .AND. .NOT. LQUERY ) THEN
INFO = -28
END IF
END IF
*
IF( INFO .NE. 0 ) THEN
CALL XERBLA( 'CBBCSD', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Get machine constants
*
EPS = SLAMCH( 'Epsilon' )
UNFL = SLAMCH( 'Safe minimum' )
TOLMUL = MAX( TEN, MIN( HUNDRED, EPS**MEIGHTH ) )
TOL = TOLMUL*EPS
THRESH = MAX( TOL, MAXITR*Q*Q*UNFL )
*
* Test for negligible sines or cosines
*
DO I = 1, Q
IF( THETA(I) .LT. THRESH ) THEN
THETA(I) = ZERO
ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
THETA(I) = PIOVER2
END IF
END DO
DO I = 1, Q-1
IF( PHI(I) .LT. THRESH ) THEN
PHI(I) = ZERO
ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
PHI(I) = PIOVER2
END IF
END DO
*
* Initial deflation
*
IMAX = Q
DO WHILE( ( IMAX .GT. 1 ) .AND. ( PHI(IMAX-1) .EQ. ZERO ) )
IMAX = IMAX - 1
END DO
IMIN = IMAX - 1
IF ( IMIN .GT. 1 ) THEN
DO WHILE( PHI(IMIN-1) .NE. ZERO )
IMIN = IMIN - 1
IF ( IMIN .LE. 1 ) EXIT
END DO
END IF
*
* Initialize iteration counter
*
MAXIT = MAXITR*Q*Q
ITER = 0
*
* Begin main iteration loop
*
DO WHILE( IMAX .GT. 1 )
*
* Compute the matrix entries
*
B11D(IMIN) = COS( THETA(IMIN) )
B21D(IMIN) = -SIN( THETA(IMIN) )
DO I = IMIN, IMAX - 1
B11E(I) = -SIN( THETA(I) ) * SIN( PHI(I) )
B11D(I+1) = COS( THETA(I+1) ) * COS( PHI(I) )
B12D(I) = SIN( THETA(I) ) * COS( PHI(I) )
B12E(I) = COS( THETA(I+1) ) * SIN( PHI(I) )
B21E(I) = -COS( THETA(I) ) * SIN( PHI(I) )
B21D(I+1) = -SIN( THETA(I+1) ) * COS( PHI(I) )
B22D(I) = COS( THETA(I) ) * COS( PHI(I) )
B22E(I) = -SIN( THETA(I+1) ) * SIN( PHI(I) )
END DO
B12D(IMAX) = SIN( THETA(IMAX) )
B22D(IMAX) = COS( THETA(IMAX) )
*
* Abort if not converging; otherwise, increment ITER
*
IF( ITER .GT. MAXIT ) THEN
INFO = 0
DO I = 1, Q
IF( PHI(I) .NE. ZERO )
$ INFO = INFO + 1
END DO
RETURN
END IF
*
ITER = ITER + IMAX - IMIN
*
* Compute shifts
*
THETAMAX = THETA(IMIN)
THETAMIN = THETA(IMIN)
DO I = IMIN+1, IMAX
IF( THETA(I) > THETAMAX )
$ THETAMAX = THETA(I)
IF( THETA(I) < THETAMIN )
$ THETAMIN = THETA(I)
END DO
*
IF( THETAMAX .GT. PIOVER2 - THRESH ) THEN
*
* Zero on diagonals of B11 and B22; induce deflation with a
* zero shift
*
MU = ZERO
NU = ONE
*
ELSE IF( THETAMIN .LT. THRESH ) THEN
*
* Zero on diagonals of B12 and B22; induce deflation with a
* zero shift
*
MU = ONE
NU = ZERO
*
ELSE
*
* Compute shifts for B11 and B21 and use the lesser
*
CALL SLAS2( B11D(IMAX-1), B11E(IMAX-1), B11D(IMAX), SIGMA11,
$ DUMMY )
CALL SLAS2( B21D(IMAX-1), B21E(IMAX-1), B21D(IMAX), SIGMA21,
$ DUMMY )
*
IF( SIGMA11 .LE. SIGMA21 ) THEN
MU = SIGMA11
NU = SQRT( ONE - MU**2 )
IF( MU .LT. THRESH ) THEN
MU = ZERO
NU = ONE
END IF
ELSE
NU = SIGMA21
MU = SQRT( 1.0 - NU**2 )
IF( NU .LT. THRESH ) THEN
MU = ONE
NU = ZERO
END IF
END IF
END IF
*
* Rotate to produce bulges in B11 and B21
*
IF( MU .LE. NU ) THEN
CALL SLARTGS( B11D(IMIN), B11E(IMIN), MU,
$ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
ELSE
CALL SLARTGS( B21D(IMIN), B21E(IMIN), NU,
$ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1) )
END IF
*
TEMP = RWORK(IV1TCS+IMIN-1)*B11D(IMIN) +
$ RWORK(IV1TSN+IMIN-1)*B11E(IMIN)
B11E(IMIN) = RWORK(IV1TCS+IMIN-1)*B11E(IMIN) -
$ RWORK(IV1TSN+IMIN-1)*B11D(IMIN)
B11D(IMIN) = TEMP
B11BULGE = RWORK(IV1TSN+IMIN-1)*B11D(IMIN+1)
B11D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B11D(IMIN+1)
TEMP = RWORK(IV1TCS+IMIN-1)*B21D(IMIN) +
$ RWORK(IV1TSN+IMIN-1)*B21E(IMIN)
B21E(IMIN) = RWORK(IV1TCS+IMIN-1)*B21E(IMIN) -
$ RWORK(IV1TSN+IMIN-1)*B21D(IMIN)
B21D(IMIN) = TEMP
B21BULGE = RWORK(IV1TSN+IMIN-1)*B21D(IMIN+1)
B21D(IMIN+1) = RWORK(IV1TCS+IMIN-1)*B21D(IMIN+1)
*
* Compute THETA(IMIN)
*
THETA( IMIN ) = ATAN2( SQRT( B21D(IMIN)**2+B21BULGE**2 ),
$ SQRT( B11D(IMIN)**2+B11BULGE**2 ) )
*
* Chase the bulges in B11(IMIN+1,IMIN) and B21(IMIN+1,IMIN)
*
IF( B11D(IMIN)**2+B11BULGE**2 .GT. THRESH**2 ) THEN
CALL SLARTGP( B11BULGE, B11D(IMIN), RWORK(IU1SN+IMIN-1),
$ RWORK(IU1CS+IMIN-1), R )
ELSE IF( MU .LE. NU ) THEN
CALL SLARTGS( B11E( IMIN ), B11D( IMIN + 1 ), MU,
$ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
ELSE
CALL SLARTGS( B12D( IMIN ), B12E( IMIN ), NU,
$ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1) )
END IF
IF( B21D(IMIN)**2+B21BULGE**2 .GT. THRESH**2 ) THEN
CALL SLARTGP( B21BULGE, B21D(IMIN), RWORK(IU2SN+IMIN-1),
$ RWORK(IU2CS+IMIN-1), R )
ELSE IF( NU .LT. MU ) THEN
CALL SLARTGS( B21E( IMIN ), B21D( IMIN + 1 ), NU,
$ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
ELSE
CALL SLARTGS( B22D(IMIN), B22E(IMIN), MU,
$ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1) )
END IF
RWORK(IU2CS+IMIN-1) = -RWORK(IU2CS+IMIN-1)
RWORK(IU2SN+IMIN-1) = -RWORK(IU2SN+IMIN-1)
*
TEMP = RWORK(IU1CS+IMIN-1)*B11E(IMIN) +
$ RWORK(IU1SN+IMIN-1)*B11D(IMIN+1)
B11D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11D(IMIN+1) -
$ RWORK(IU1SN+IMIN-1)*B11E(IMIN)
B11E(IMIN) = TEMP
IF( IMAX .GT. IMIN+1 ) THEN
B11BULGE = RWORK(IU1SN+IMIN-1)*B11E(IMIN+1)
B11E(IMIN+1) = RWORK(IU1CS+IMIN-1)*B11E(IMIN+1)
END IF
TEMP = RWORK(IU1CS+IMIN-1)*B12D(IMIN) +
$ RWORK(IU1SN+IMIN-1)*B12E(IMIN)
B12E(IMIN) = RWORK(IU1CS+IMIN-1)*B12E(IMIN) -
$ RWORK(IU1SN+IMIN-1)*B12D(IMIN)
B12D(IMIN) = TEMP
B12BULGE = RWORK(IU1SN+IMIN-1)*B12D(IMIN+1)
B12D(IMIN+1) = RWORK(IU1CS+IMIN-1)*B12D(IMIN+1)
TEMP = RWORK(IU2CS+IMIN-1)*B21E(IMIN) +
$ RWORK(IU2SN+IMIN-1)*B21D(IMIN+1)
B21D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21D(IMIN+1) -
$ RWORK(IU2SN+IMIN-1)*B21E(IMIN)
B21E(IMIN) = TEMP
IF( IMAX .GT. IMIN+1 ) THEN
B21BULGE = RWORK(IU2SN+IMIN-1)*B21E(IMIN+1)
B21E(IMIN+1) = RWORK(IU2CS+IMIN-1)*B21E(IMIN+1)
END IF
TEMP = RWORK(IU2CS+IMIN-1)*B22D(IMIN) +
$ RWORK(IU2SN+IMIN-1)*B22E(IMIN)
B22E(IMIN) = RWORK(IU2CS+IMIN-1)*B22E(IMIN) -
$ RWORK(IU2SN+IMIN-1)*B22D(IMIN)
B22D(IMIN) = TEMP
B22BULGE = RWORK(IU2SN+IMIN-1)*B22D(IMIN+1)
B22D(IMIN+1) = RWORK(IU2CS+IMIN-1)*B22D(IMIN+1)
*
* Inner loop: chase bulges from B11(IMIN,IMIN+2),
* B12(IMIN,IMIN+1), B21(IMIN,IMIN+2), and B22(IMIN,IMIN+1) to
* bottom-right
*
DO I = IMIN+1, IMAX-1
*
* Compute PHI(I-1)
*
X1 = SIN(THETA(I-1))*B11E(I-1) + COS(THETA(I-1))*B21E(I-1)
X2 = SIN(THETA(I-1))*B11BULGE + COS(THETA(I-1))*B21BULGE
Y1 = SIN(THETA(I-1))*B12D(I-1) + COS(THETA(I-1))*B22D(I-1)
Y2 = SIN(THETA(I-1))*B12BULGE + COS(THETA(I-1))*B22BULGE
*
PHI(I-1) = ATAN2( SQRT(X1**2+X2**2), SQRT(Y1**2+Y2**2) )
*
* Determine if there are bulges to chase or if a new direct
* summand has been reached
*
RESTART11 = B11E(I-1)**2 + B11BULGE**2 .LE. THRESH**2
RESTART21 = B21E(I-1)**2 + B21BULGE**2 .LE. THRESH**2
RESTART12 = B12D(I-1)**2 + B12BULGE**2 .LE. THRESH**2
RESTART22 = B22D(I-1)**2 + B22BULGE**2 .LE. THRESH**2
*
* If possible, chase bulges from B11(I-1,I+1), B12(I-1,I),
* B21(I-1,I+1), and B22(I-1,I). If necessary, restart bulge-
* chasing by applying the original shift again.
*
IF( .NOT. RESTART11 .AND. .NOT. RESTART21 ) THEN
CALL SLARTGP( X2, X1, RWORK(IV1TSN+I-1),
$ RWORK(IV1TCS+I-1), R )
ELSE IF( .NOT. RESTART11 .AND. RESTART21 ) THEN
CALL SLARTGP( B11BULGE, B11E(I-1), RWORK(IV1TSN+I-1),
$ RWORK(IV1TCS+I-1), R )
ELSE IF( RESTART11 .AND. .NOT. RESTART21 ) THEN
CALL SLARTGP( B21BULGE, B21E(I-1), RWORK(IV1TSN+I-1),
$ RWORK(IV1TCS+I-1), R )
ELSE IF( MU .LE. NU ) THEN
CALL SLARTGS( B11D(I), B11E(I), MU, RWORK(IV1TCS+I-1),
$ RWORK(IV1TSN+I-1) )
ELSE
CALL SLARTGS( B21D(I), B21E(I), NU, RWORK(IV1TCS+I-1),
$ RWORK(IV1TSN+I-1) )
END IF
RWORK(IV1TCS+I-1) = -RWORK(IV1TCS+I-1)
RWORK(IV1TSN+I-1) = -RWORK(IV1TSN+I-1)
IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
CALL SLARTGP( Y2, Y1, RWORK(IV2TSN+I-1-1),
$ RWORK(IV2TCS+I-1-1), R )
ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
CALL SLARTGP( B12BULGE, B12D(I-1), RWORK(IV2TSN+I-1-1),
$ RWORK(IV2TCS+I-1-1), R )
ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
CALL SLARTGP( B22BULGE, B22D(I-1), RWORK(IV2TSN+I-1-1),
$ RWORK(IV2TCS+I-1-1), R )
ELSE IF( NU .LT. MU ) THEN
CALL SLARTGS( B12E(I-1), B12D(I), NU,
$ RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
ELSE
CALL SLARTGS( B22E(I-1), B22D(I), MU,
$ RWORK(IV2TCS+I-1-1), RWORK(IV2TSN+I-1-1) )
END IF
*
TEMP = RWORK(IV1TCS+I-1)*B11D(I) + RWORK(IV1TSN+I-1)*B11E(I)
B11E(I) = RWORK(IV1TCS+I-1)*B11E(I) -
$ RWORK(IV1TSN+I-1)*B11D(I)
B11D(I) = TEMP
B11BULGE = RWORK(IV1TSN+I-1)*B11D(I+1)
B11D(I+1) = RWORK(IV1TCS+I-1)*B11D(I+1)
TEMP = RWORK(IV1TCS+I-1)*B21D(I) + RWORK(IV1TSN+I-1)*B21E(I)
B21E(I) = RWORK(IV1TCS+I-1)*B21E(I) -
$ RWORK(IV1TSN+I-1)*B21D(I)
B21D(I) = TEMP
B21BULGE = RWORK(IV1TSN+I-1)*B21D(I+1)
B21D(I+1) = RWORK(IV1TCS+I-1)*B21D(I+1)
TEMP = RWORK(IV2TCS+I-1-1)*B12E(I-1) +
$ RWORK(IV2TSN+I-1-1)*B12D(I)
B12D(I) = RWORK(IV2TCS+I-1-1)*B12D(I) -
$ RWORK(IV2TSN+I-1-1)*B12E(I-1)
B12E(I-1) = TEMP
B12BULGE = RWORK(IV2TSN+I-1-1)*B12E(I)
B12E(I) = RWORK(IV2TCS+I-1-1)*B12E(I)
TEMP = RWORK(IV2TCS+I-1-1)*B22E(I-1) +
$ RWORK(IV2TSN+I-1-1)*B22D(I)
B22D(I) = RWORK(IV2TCS+I-1-1)*B22D(I) -
$ RWORK(IV2TSN+I-1-1)*B22E(I-1)
B22E(I-1) = TEMP
B22BULGE = RWORK(IV2TSN+I-1-1)*B22E(I)
B22E(I) = RWORK(IV2TCS+I-1-1)*B22E(I)
*
* Compute THETA(I)
*
X1 = COS(PHI(I-1))*B11D(I) + SIN(PHI(I-1))*B12E(I-1)
X2 = COS(PHI(I-1))*B11BULGE + SIN(PHI(I-1))*B12BULGE
Y1 = COS(PHI(I-1))*B21D(I) + SIN(PHI(I-1))*B22E(I-1)
Y2 = COS(PHI(I-1))*B21BULGE + SIN(PHI(I-1))*B22BULGE
*
THETA(I) = ATAN2( SQRT(Y1**2+Y2**2), SQRT(X1**2+X2**2) )
*
* Determine if there are bulges to chase or if a new direct
* summand has been reached
*
RESTART11 = B11D(I)**2 + B11BULGE**2 .LE. THRESH**2
RESTART12 = B12E(I-1)**2 + B12BULGE**2 .LE. THRESH**2
RESTART21 = B21D(I)**2 + B21BULGE**2 .LE. THRESH**2
RESTART22 = B22E(I-1)**2 + B22BULGE**2 .LE. THRESH**2
*
* If possible, chase bulges from B11(I+1,I), B12(I+1,I-1),
* B21(I+1,I), and B22(I+1,I-1). If necessary, restart bulge-
* chasing by applying the original shift again.
*
IF( .NOT. RESTART11 .AND. .NOT. RESTART12 ) THEN
CALL SLARTGP( X2, X1, RWORK(IU1SN+I-1), RWORK(IU1CS+I-1),
$ R )
ELSE IF( .NOT. RESTART11 .AND. RESTART12 ) THEN
CALL SLARTGP( B11BULGE, B11D(I), RWORK(IU1SN+I-1),
$ RWORK(IU1CS+I-1), R )
ELSE IF( RESTART11 .AND. .NOT. RESTART12 ) THEN
CALL SLARTGP( B12BULGE, B12E(I-1), RWORK(IU1SN+I-1),
$ RWORK(IU1CS+I-1), R )
ELSE IF( MU .LE. NU ) THEN
CALL SLARTGS( B11E(I), B11D(I+1), MU, RWORK(IU1CS+I-1),
$ RWORK(IU1SN+I-1) )
ELSE
CALL SLARTGS( B12D(I), B12E(I), NU, RWORK(IU1CS+I-1),
$ RWORK(IU1SN+I-1) )
END IF
IF( .NOT. RESTART21 .AND. .NOT. RESTART22 ) THEN
CALL SLARTGP( Y2, Y1, RWORK(IU2SN+I-1), RWORK(IU2CS+I-1),
$ R )
ELSE IF( .NOT. RESTART21 .AND. RESTART22 ) THEN
CALL SLARTGP( B21BULGE, B21D(I), RWORK(IU2SN+I-1),
$ RWORK(IU2CS+I-1), R )
ELSE IF( RESTART21 .AND. .NOT. RESTART22 ) THEN
CALL SLARTGP( B22BULGE, B22E(I-1), RWORK(IU2SN+I-1),
$ RWORK(IU2CS+I-1), R )
ELSE IF( NU .LT. MU ) THEN
CALL SLARTGS( B21E(I), B21E(I+1), NU, RWORK(IU2CS+I-1),
$ RWORK(IU2SN+I-1) )
ELSE
CALL SLARTGS( B22D(I), B22E(I), MU, RWORK(IU2CS+I-1),
$ RWORK(IU2SN+I-1) )
END IF
RWORK(IU2CS+I-1) = -RWORK(IU2CS+I-1)
RWORK(IU2SN+I-1) = -RWORK(IU2SN+I-1)
*
TEMP = RWORK(IU1CS+I-1)*B11E(I) + RWORK(IU1SN+I-1)*B11D(I+1)
B11D(I+1) = RWORK(IU1CS+I-1)*B11D(I+1) -
$ RWORK(IU1SN+I-1)*B11E(I)
B11E(I) = TEMP
IF( I .LT. IMAX - 1 ) THEN
B11BULGE = RWORK(IU1SN+I-1)*B11E(I+1)
B11E(I+1) = RWORK(IU1CS+I-1)*B11E(I+1)
END IF
TEMP = RWORK(IU2CS+I-1)*B21E(I) + RWORK(IU2SN+I-1)*B21D(I+1)
B21D(I+1) = RWORK(IU2CS+I-1)*B21D(I+1) -
$ RWORK(IU2SN+I-1)*B21E(I)
B21E(I) = TEMP
IF( I .LT. IMAX - 1 ) THEN
B21BULGE = RWORK(IU2SN+I-1)*B21E(I+1)
B21E(I+1) = RWORK(IU2CS+I-1)*B21E(I+1)
END IF
TEMP = RWORK(IU1CS+I-1)*B12D(I) + RWORK(IU1SN+I-1)*B12E(I)
B12E(I) = RWORK(IU1CS+I-1)*B12E(I) -
$ RWORK(IU1SN+I-1)*B12D(I)
B12D(I) = TEMP
B12BULGE = RWORK(IU1SN+I-1)*B12D(I+1)
B12D(I+1) = RWORK(IU1CS+I-1)*B12D(I+1)
TEMP = RWORK(IU2CS+I-1)*B22D(I) + RWORK(IU2SN+I-1)*B22E(I)
B22E(I) = RWORK(IU2CS+I-1)*B22E(I) -
$ RWORK(IU2SN+I-1)*B22D(I)
B22D(I) = TEMP
B22BULGE = RWORK(IU2SN+I-1)*B22D(I+1)
B22D(I+1) = RWORK(IU2CS+I-1)*B22D(I+1)
*
END DO
*
* Compute PHI(IMAX-1)
*
X1 = SIN(THETA(IMAX-1))*B11E(IMAX-1) +
$ COS(THETA(IMAX-1))*B21E(IMAX-1)
Y1 = SIN(THETA(IMAX-1))*B12D(IMAX-1) +
$ COS(THETA(IMAX-1))*B22D(IMAX-1)
Y2 = SIN(THETA(IMAX-1))*B12BULGE + COS(THETA(IMAX-1))*B22BULGE
*
PHI(IMAX-1) = ATAN2( ABS(X1), SQRT(Y1**2+Y2**2) )
*
* Chase bulges from B12(IMAX-1,IMAX) and B22(IMAX-1,IMAX)
*
RESTART12 = B12D(IMAX-1)**2 + B12BULGE**2 .LE. THRESH**2
RESTART22 = B22D(IMAX-1)**2 + B22BULGE**2 .LE. THRESH**2
*
IF( .NOT. RESTART12 .AND. .NOT. RESTART22 ) THEN
CALL SLARTGP( Y2, Y1, RWORK(IV2TSN+IMAX-1-1),
$ RWORK(IV2TCS+IMAX-1-1), R )
ELSE IF( .NOT. RESTART12 .AND. RESTART22 ) THEN
CALL SLARTGP( B12BULGE, B12D(IMAX-1),
$ RWORK(IV2TSN+IMAX-1-1),
$ RWORK(IV2TCS+IMAX-1-1), R )
ELSE IF( RESTART12 .AND. .NOT. RESTART22 ) THEN
CALL SLARTGP( B22BULGE, B22D(IMAX-1),
$ RWORK(IV2TSN+IMAX-1-1),
$ RWORK(IV2TCS+IMAX-1-1), R )
ELSE IF( NU .LT. MU ) THEN
CALL SLARTGS( B12E(IMAX-1), B12D(IMAX), NU,
$ RWORK(IV2TCS+IMAX-1-1),
$ RWORK(IV2TSN+IMAX-1-1) )
ELSE
CALL SLARTGS( B22E(IMAX-1), B22D(IMAX), MU,
$ RWORK(IV2TCS+IMAX-1-1),
$ RWORK(IV2TSN+IMAX-1-1) )
END IF
*
TEMP = RWORK(IV2TCS+IMAX-1-1)*B12E(IMAX-1) +
$ RWORK(IV2TSN+IMAX-1-1)*B12D(IMAX)
B12D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B12D(IMAX) -
$ RWORK(IV2TSN+IMAX-1-1)*B12E(IMAX-1)
B12E(IMAX-1) = TEMP
TEMP = RWORK(IV2TCS+IMAX-1-1)*B22E(IMAX-1) +
$ RWORK(IV2TSN+IMAX-1-1)*B22D(IMAX)
B22D(IMAX) = RWORK(IV2TCS+IMAX-1-1)*B22D(IMAX) -
$ RWORK(IV2TSN+IMAX-1-1)*B22E(IMAX-1)
B22E(IMAX-1) = TEMP
*
* Update singular vectors
*
IF( WANTU1 ) THEN
IF( COLMAJOR ) THEN
CALL CLASR( 'R', 'V', 'F', P, IMAX-IMIN+1,
$ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
$ U1(1,IMIN), LDU1 )
ELSE
CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, P,
$ RWORK(IU1CS+IMIN-1), RWORK(IU1SN+IMIN-1),
$ U1(IMIN,1), LDU1 )
END IF
END IF
IF( WANTU2 ) THEN
IF( COLMAJOR ) THEN
CALL CLASR( 'R', 'V', 'F', M-P, IMAX-IMIN+1,
$ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
$ U2(1,IMIN), LDU2 )
ELSE
CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-P,
$ RWORK(IU2CS+IMIN-1), RWORK(IU2SN+IMIN-1),
$ U2(IMIN,1), LDU2 )
END IF
END IF
IF( WANTV1T ) THEN
IF( COLMAJOR ) THEN
CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, Q,
$ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
$ V1T(IMIN,1), LDV1T )
ELSE
CALL CLASR( 'R', 'V', 'F', Q, IMAX-IMIN+1,
$ RWORK(IV1TCS+IMIN-1), RWORK(IV1TSN+IMIN-1),
$ V1T(1,IMIN), LDV1T )
END IF
END IF
IF( WANTV2T ) THEN
IF( COLMAJOR ) THEN
CALL CLASR( 'L', 'V', 'F', IMAX-IMIN+1, M-Q,
$ RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
$ V2T(IMIN,1), LDV2T )
ELSE
CALL CLASR( 'R', 'V', 'F', M-Q, IMAX-IMIN+1,
$ RWORK(IV2TCS+IMIN-1), RWORK(IV2TSN+IMIN-1),
$ V2T(1,IMIN), LDV2T )
END IF
END IF
*
* Fix signs on B11(IMAX-1,IMAX) and B21(IMAX-1,IMAX)
*
IF( B11E(IMAX-1)+B21E(IMAX-1) .GT. 0 ) THEN
B11D(IMAX) = -B11D(IMAX)
B21D(IMAX) = -B21D(IMAX)
IF( WANTV1T ) THEN
IF( COLMAJOR ) THEN
CALL CSCAL( Q, NEGONECOMPLEX, V1T(IMAX,1), LDV1T )
ELSE
CALL CSCAL( Q, NEGONECOMPLEX, V1T(1,IMAX), 1 )
END IF
END IF
END IF
*
* Compute THETA(IMAX)
*
X1 = COS(PHI(IMAX-1))*B11D(IMAX) +
$ SIN(PHI(IMAX-1))*B12E(IMAX-1)
Y1 = COS(PHI(IMAX-1))*B21D(IMAX) +
$ SIN(PHI(IMAX-1))*B22E(IMAX-1)
*
THETA(IMAX) = ATAN2( ABS(Y1), ABS(X1) )
*
* Fix signs on B11(IMAX,IMAX), B12(IMAX,IMAX-1), B21(IMAX,IMAX),
* and B22(IMAX,IMAX-1)
*
IF( B11D(IMAX)+B12E(IMAX-1) .LT. 0 ) THEN
B12D(IMAX) = -B12D(IMAX)
IF( WANTU1 ) THEN
IF( COLMAJOR ) THEN
CALL CSCAL( P, NEGONECOMPLEX, U1(1,IMAX), 1 )
ELSE
CALL CSCAL( P, NEGONECOMPLEX, U1(IMAX,1), LDU1 )
END IF
END IF
END IF
IF( B21D(IMAX)+B22E(IMAX-1) .GT. 0 ) THEN
B22D(IMAX) = -B22D(IMAX)
IF( WANTU2 ) THEN
IF( COLMAJOR ) THEN
CALL CSCAL( M-P, NEGONECOMPLEX, U2(1,IMAX), 1 )
ELSE
CALL CSCAL( M-P, NEGONECOMPLEX, U2(IMAX,1), LDU2 )
END IF
END IF
END IF
*
* Fix signs on B12(IMAX,IMAX) and B22(IMAX,IMAX)
*
IF( B12D(IMAX)+B22D(IMAX) .LT. 0 ) THEN
IF( WANTV2T ) THEN
IF( COLMAJOR ) THEN
CALL CSCAL( M-Q, NEGONECOMPLEX, V2T(IMAX,1), LDV2T )
ELSE
CALL CSCAL( M-Q, NEGONECOMPLEX, V2T(1,IMAX), 1 )
END IF
END IF
END IF
*
* Test for negligible sines or cosines
*
DO I = IMIN, IMAX
IF( THETA(I) .LT. THRESH ) THEN
THETA(I) = ZERO
ELSE IF( THETA(I) .GT. PIOVER2-THRESH ) THEN
THETA(I) = PIOVER2
END IF
END DO
DO I = IMIN, IMAX-1
IF( PHI(I) .LT. THRESH ) THEN
PHI(I) = ZERO
ELSE IF( PHI(I) .GT. PIOVER2-THRESH ) THEN
PHI(I) = PIOVER2
END IF
END DO
*
* Deflate
*
IF (IMAX .GT. 1) THEN
DO WHILE( PHI(IMAX-1) .EQ. ZERO )
IMAX = IMAX - 1
IF (IMAX .LE. 1) EXIT
END DO
END IF
IF( IMIN .GT. IMAX - 1 )
$ IMIN = IMAX - 1
IF (IMIN .GT. 1) THEN
DO WHILE (PHI(IMIN-1) .NE. ZERO)
IMIN = IMIN - 1
IF (IMIN .LE. 1) EXIT
END DO
END IF
*
* Repeat main iteration loop
*
END DO
*
* Postprocessing: order THETA from least to greatest
*
DO I = 1, Q
*
MINI = I
THETAMIN = THETA(I)
DO J = I+1, Q
IF( THETA(J) .LT. THETAMIN ) THEN
MINI = J
THETAMIN = THETA(J)
END IF
END DO
*
IF( MINI .NE. I ) THEN
THETA(MINI) = THETA(I)
THETA(I) = THETAMIN
IF( COLMAJOR ) THEN
IF( WANTU1 )
$ CALL CSWAP( P, U1(1,I), 1, U1(1,MINI), 1 )
IF( WANTU2 )
$ CALL CSWAP( M-P, U2(1,I), 1, U2(1,MINI), 1 )
IF( WANTV1T )
$ CALL CSWAP( Q, V1T(I,1), LDV1T, V1T(MINI,1), LDV1T )
IF( WANTV2T )
$ CALL CSWAP( M-Q, V2T(I,1), LDV2T, V2T(MINI,1),
$ LDV2T )
ELSE
IF( WANTU1 )
$ CALL CSWAP( P, U1(I,1), LDU1, U1(MINI,1), LDU1 )
IF( WANTU2 )
$ CALL CSWAP( M-P, U2(I,1), LDU2, U2(MINI,1), LDU2 )
IF( WANTV1T )
$ CALL CSWAP( Q, V1T(1,I), 1, V1T(1,MINI), 1 )
IF( WANTV2T )
$ CALL CSWAP( M-Q, V2T(1,I), 1, V2T(1,MINI), 1 )
END IF
END IF
*
END DO
*
RETURN
*
* End of CBBCSD
*
END
|