1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469
|
*> \brief \b CHBGST
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CHBGST + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/chbgst.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/chbgst.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/chbgst.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
* LDX, WORK, RWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO, VECT
* INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
* $ X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHBGST reduces a complex Hermitian-definite banded generalized
*> eigenproblem A*x = lambda*B*x to standard form C*y = lambda*y,
*> such that C has the same bandwidth as A.
*>
*> B must have been previously factorized as S**H*S by CPBSTF, using a
*> split Cholesky factorization. A is overwritten by C = X**H*A*X, where
*> X = S**(-1)*Q and Q is a unitary matrix chosen to preserve the
*> bandwidth of A.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] VECT
*> \verbatim
*> VECT is CHARACTER*1
*> = 'N': do not form the transformation matrix X;
*> = 'V': form X.
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangle of A is stored;
*> = 'L': Lower triangle of A is stored.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*> KA is INTEGER
*> The number of superdiagonals of the matrix A if UPLO = 'U',
*> or the number of subdiagonals if UPLO = 'L'. KA >= 0.
*> \endverbatim
*>
*> \param[in] KB
*> \verbatim
*> KB is INTEGER
*> The number of superdiagonals of the matrix B if UPLO = 'U',
*> or the number of subdiagonals if UPLO = 'L'. KA >= KB >= 0.
*> \endverbatim
*>
*> \param[in,out] AB
*> \verbatim
*> AB is COMPLEX array, dimension (LDAB,N)
*> On entry, the upper or lower triangle of the Hermitian band
*> matrix A, stored in the first ka+1 rows of the array. The
*> j-th column of A is stored in the j-th column of the array AB
*> as follows:
*> if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j;
*> if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka).
*>
*> On exit, the transformed matrix X**H*A*X, stored in the same
*> format as A.
*> \endverbatim
*>
*> \param[in] LDAB
*> \verbatim
*> LDAB is INTEGER
*> The leading dimension of the array AB. LDAB >= KA+1.
*> \endverbatim
*>
*> \param[in] BB
*> \verbatim
*> BB is COMPLEX array, dimension (LDBB,N)
*> The banded factor S from the split Cholesky factorization of
*> B, as returned by CPBSTF, stored in the first kb+1 rows of
*> the array.
*> \endverbatim
*>
*> \param[in] LDBB
*> \verbatim
*> LDBB is INTEGER
*> The leading dimension of the array BB. LDBB >= KB+1.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,N)
*> If VECT = 'V', the n-by-n matrix X.
*> If VECT = 'N', the array X is not referenced.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X.
*> LDX >= max(1,N) if VECT = 'V'; LDX >= 1 otherwise.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERcomputational
*
* =====================================================================
SUBROUTINE CHBGST( VECT, UPLO, N, KA, KB, AB, LDAB, BB, LDBB, X,
$ LDX, WORK, RWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO, VECT
INTEGER INFO, KA, KB, LDAB, LDBB, LDX, N
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX AB( LDAB, * ), BB( LDBB, * ), WORK( * ),
$ X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX CZERO, CONE
REAL ONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ), ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
LOGICAL UPDATE, UPPER, WANTX
INTEGER I, I0, I1, I2, INCA, J, J1, J1T, J2, J2T, K,
$ KA1, KB1, KBT, L, M, NR, NRT, NX
REAL BII
COMPLEX RA, RA1, T
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL CGERC, CGERU, CLACGV, CLAR2V, CLARGV, CLARTG,
$ CLARTV, CLASET, CROT, CSSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Test the input parameters
*
WANTX = LSAME( VECT, 'V' )
UPPER = LSAME( UPLO, 'U' )
KA1 = KA + 1
KB1 = KB + 1
INFO = 0
IF( .NOT.WANTX .AND. .NOT.LSAME( VECT, 'N' ) ) THEN
INFO = -1
ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( KA.LT.0 ) THEN
INFO = -4
ELSE IF( KB.LT.0 .OR. KB.GT.KA ) THEN
INFO = -5
ELSE IF( LDAB.LT.KA+1 ) THEN
INFO = -7
ELSE IF( LDBB.LT.KB+1 ) THEN
INFO = -9
ELSE IF( LDX.LT.1 .OR. WANTX .AND. LDX.LT.MAX( 1, N ) ) THEN
INFO = -11
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CHBGST', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
INCA = LDAB*KA1
*
* Initialize X to the unit matrix, if needed
*
IF( WANTX )
$ CALL CLASET( 'Full', N, N, CZERO, CONE, X, LDX )
*
* Set M to the splitting point m. It must be the same value as is
* used in CPBSTF. The chosen value allows the arrays WORK and RWORK
* to be of dimension (N).
*
M = ( N+KB ) / 2
*
* The routine works in two phases, corresponding to the two halves
* of the split Cholesky factorization of B as S**H*S where
*
* S = ( U )
* ( M L )
*
* with U upper triangular of order m, and L lower triangular of
* order n-m. S has the same bandwidth as B.
*
* S is treated as a product of elementary matrices:
*
* S = S(m)*S(m-1)*...*S(2)*S(1)*S(m+1)*S(m+2)*...*S(n-1)*S(n)
*
* where S(i) is determined by the i-th row of S.
*
* In phase 1, the index i takes the values n, n-1, ... , m+1;
* in phase 2, it takes the values 1, 2, ... , m.
*
* For each value of i, the current matrix A is updated by forming
* inv(S(i))**H*A*inv(S(i)). This creates a triangular bulge outside
* the band of A. The bulge is then pushed down toward the bottom of
* A in phase 1, and up toward the top of A in phase 2, by applying
* plane rotations.
*
* There are kb*(kb+1)/2 elements in the bulge, but at most 2*kb-1
* of them are linearly independent, so annihilating a bulge requires
* only 2*kb-1 plane rotations. The rotations are divided into a 1st
* set of kb-1 rotations, and a 2nd set of kb rotations.
*
* Wherever possible, rotations are generated and applied in vector
* operations of length NR between the indices J1 and J2 (sometimes
* replaced by modified values NRT, J1T or J2T).
*
* The real cosines and complex sines of the rotations are stored in
* the arrays RWORK and WORK, those of the 1st set in elements
* 2:m-kb-1, and those of the 2nd set in elements m-kb+1:n.
*
* The bulges are not formed explicitly; nonzero elements outside the
* band are created only when they are required for generating new
* rotations; they are stored in the array WORK, in positions where
* they are later overwritten by the sines of the rotations which
* annihilate them.
*
* **************************** Phase 1 *****************************
*
* The logical structure of this phase is:
*
* UPDATE = .TRUE.
* DO I = N, M + 1, -1
* use S(i) to update A and create a new bulge
* apply rotations to push all bulges KA positions downward
* END DO
* UPDATE = .FALSE.
* DO I = M + KA + 1, N - 1
* apply rotations to push all bulges KA positions downward
* END DO
*
* To avoid duplicating code, the two loops are merged.
*
UPDATE = .TRUE.
I = N + 1
10 CONTINUE
IF( UPDATE ) THEN
I = I - 1
KBT = MIN( KB, I-1 )
I0 = I - 1
I1 = MIN( N, I+KA )
I2 = I - KBT + KA1
IF( I.LT.M+1 ) THEN
UPDATE = .FALSE.
I = I + 1
I0 = M
IF( KA.EQ.0 )
$ GO TO 480
GO TO 10
END IF
ELSE
I = I + KA
IF( I.GT.N-1 )
$ GO TO 480
END IF
*
IF( UPPER ) THEN
*
* Transform A, working with the upper triangle
*
IF( UPDATE ) THEN
*
* Form inv(S(i))**H * A * inv(S(i))
*
BII = REAL( BB( KB1, I ) )
AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
DO 20 J = I + 1, I1
AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
20 CONTINUE
DO 30 J = MAX( 1, I-KA ), I - 1
AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
30 CONTINUE
DO 60 K = I - KBT, I - 1
DO 40 J = I - KBT, K
AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
$ BB( J-I+KB1, I )*
$ CONJG( AB( K-I+KA1, I ) ) -
$ CONJG( BB( K-I+KB1, I ) )*
$ AB( J-I+KA1, I ) +
$ REAL( AB( KA1, I ) )*
$ BB( J-I+KB1, I )*
$ CONJG( BB( K-I+KB1, I ) )
40 CONTINUE
DO 50 J = MAX( 1, I-KA ), I - KBT - 1
AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
$ CONJG( BB( K-I+KB1, I ) )*
$ AB( J-I+KA1, I )
50 CONTINUE
60 CONTINUE
DO 80 J = I, I1
DO 70 K = MAX( J-KA, I-KBT ), I - 1
AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
$ BB( K-I+KB1, I )*AB( I-J+KA1, J )
70 CONTINUE
80 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by inv(S(i))
*
CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
IF( KBT.GT.0 )
$ CALL CGERC( N-M, KBT, -CONE, X( M+1, I ), 1,
$ BB( KB1-KBT, I ), 1, X( M+1, I-KBT ),
$ LDX )
END IF
*
* store a(i,i1) in RA1 for use in next loop over K
*
RA1 = AB( I-I1+KA1, I1 )
END IF
*
* Generate and apply vectors of rotations to chase all the
* existing bulges KA positions down toward the bottom of the
* band
*
DO 130 K = 1, KB - 1
IF( UPDATE ) THEN
*
* Determine the rotations which would annihilate the bulge
* which has in theory just been created
*
IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
*
* generate rotation to annihilate a(i,i-k+ka+1)
*
CALL CLARTG( AB( K+1, I-K+KA ), RA1,
$ RWORK( I-K+KA-M ), WORK( I-K+KA-M ), RA )
*
* create nonzero element a(i-k,i-k+ka+1) outside the
* band and store it in WORK(i-k)
*
T = -BB( KB1-K, I )*RA1
WORK( I-K ) = RWORK( I-K+KA-M )*T -
$ CONJG( WORK( I-K+KA-M ) )*
$ AB( 1, I-K+KA )
AB( 1, I-K+KA ) = WORK( I-K+KA-M )*T +
$ RWORK( I-K+KA-M )*AB( 1, I-K+KA )
RA1 = RA
END IF
END IF
J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
NR = ( N-J2+KA ) / KA1
J1 = J2 + ( NR-1 )*KA1
IF( UPDATE ) THEN
J2T = MAX( J2, I+2*KA-K+1 )
ELSE
J2T = J2
END IF
NRT = ( N-J2T+KA ) / KA1
DO 90 J = J2T, J1, KA1
*
* create nonzero element a(j-ka,j+1) outside the band
* and store it in WORK(j-m)
*
WORK( J-M ) = WORK( J-M )*AB( 1, J+1 )
AB( 1, J+1 ) = RWORK( J-M )*AB( 1, J+1 )
90 CONTINUE
*
* generate rotations in 1st set to annihilate elements which
* have been created outside the band
*
IF( NRT.GT.0 )
$ CALL CLARGV( NRT, AB( 1, J2T ), INCA, WORK( J2T-M ), KA1,
$ RWORK( J2T-M ), KA1 )
IF( NR.GT.0 ) THEN
*
* apply rotations in 1st set from the right
*
DO 100 L = 1, KA - 1
CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
$ AB( KA-L, J2+1 ), INCA, RWORK( J2-M ),
$ WORK( J2-M ), KA1 )
100 CONTINUE
*
* apply rotations in 1st set from both sides to diagonal
* blocks
*
CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
$ AB( KA, J2+1 ), INCA, RWORK( J2-M ),
$ WORK( J2-M ), KA1 )
*
CALL CLACGV( NR, WORK( J2-M ), KA1 )
END IF
*
* start applying rotations in 1st set from the left
*
DO 110 L = KA - 1, KB - K + 1, -1
NRT = ( N-J2+L ) / KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
$ AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
$ WORK( J2-M ), KA1 )
110 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by product of rotations in 1st set
*
DO 120 J = J2, J1, KA1
CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
$ RWORK( J-M ), CONJG( WORK( J-M ) ) )
120 CONTINUE
END IF
130 CONTINUE
*
IF( UPDATE ) THEN
IF( I2.LE.N .AND. KBT.GT.0 ) THEN
*
* create nonzero element a(i-kbt,i-kbt+ka+1) outside the
* band and store it in WORK(i-kbt)
*
WORK( I-KBT ) = -BB( KB1-KBT, I )*RA1
END IF
END IF
*
DO 170 K = KB, 1, -1
IF( UPDATE ) THEN
J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
ELSE
J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
END IF
*
* finish applying rotations in 2nd set from the left
*
DO 140 L = KB - K, 1, -1
NRT = ( N-J2+KA+L ) / KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( L, J2-L+1 ), INCA,
$ AB( L+1, J2-L+1 ), INCA, RWORK( J2-KA ),
$ WORK( J2-KA ), KA1 )
140 CONTINUE
NR = ( N-J2+KA ) / KA1
J1 = J2 + ( NR-1 )*KA1
DO 150 J = J1, J2, -KA1
WORK( J ) = WORK( J-KA )
RWORK( J ) = RWORK( J-KA )
150 CONTINUE
DO 160 J = J2, J1, KA1
*
* create nonzero element a(j-ka,j+1) outside the band
* and store it in WORK(j)
*
WORK( J ) = WORK( J )*AB( 1, J+1 )
AB( 1, J+1 ) = RWORK( J )*AB( 1, J+1 )
160 CONTINUE
IF( UPDATE ) THEN
IF( I-K.LT.N-KA .AND. K.LE.KBT )
$ WORK( I-K+KA ) = WORK( I-K )
END IF
170 CONTINUE
*
DO 210 K = KB, 1, -1
J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
NR = ( N-J2+KA ) / KA1
J1 = J2 + ( NR-1 )*KA1
IF( NR.GT.0 ) THEN
*
* generate rotations in 2nd set to annihilate elements
* which have been created outside the band
*
CALL CLARGV( NR, AB( 1, J2 ), INCA, WORK( J2 ), KA1,
$ RWORK( J2 ), KA1 )
*
* apply rotations in 2nd set from the right
*
DO 180 L = 1, KA - 1
CALL CLARTV( NR, AB( KA1-L, J2 ), INCA,
$ AB( KA-L, J2+1 ), INCA, RWORK( J2 ),
$ WORK( J2 ), KA1 )
180 CONTINUE
*
* apply rotations in 2nd set from both sides to diagonal
* blocks
*
CALL CLAR2V( NR, AB( KA1, J2 ), AB( KA1, J2+1 ),
$ AB( KA, J2+1 ), INCA, RWORK( J2 ),
$ WORK( J2 ), KA1 )
*
CALL CLACGV( NR, WORK( J2 ), KA1 )
END IF
*
* start applying rotations in 2nd set from the left
*
DO 190 L = KA - 1, KB - K + 1, -1
NRT = ( N-J2+L ) / KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
$ AB( L+1, J2+KA1-L ), INCA, RWORK( J2 ),
$ WORK( J2 ), KA1 )
190 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by product of rotations in 2nd set
*
DO 200 J = J2, J1, KA1
CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
$ RWORK( J ), CONJG( WORK( J ) ) )
200 CONTINUE
END IF
210 CONTINUE
*
DO 230 K = 1, KB - 1
J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
*
* finish applying rotations in 1st set from the left
*
DO 220 L = KB - K, 1, -1
NRT = ( N-J2+L ) / KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( L, J2+KA1-L ), INCA,
$ AB( L+1, J2+KA1-L ), INCA, RWORK( J2-M ),
$ WORK( J2-M ), KA1 )
220 CONTINUE
230 CONTINUE
*
IF( KB.GT.1 ) THEN
DO 240 J = N - 1, J2 + KA, -1
RWORK( J-M ) = RWORK( J-KA-M )
WORK( J-M ) = WORK( J-KA-M )
240 CONTINUE
END IF
*
ELSE
*
* Transform A, working with the lower triangle
*
IF( UPDATE ) THEN
*
* Form inv(S(i))**H * A * inv(S(i))
*
BII = REAL( BB( 1, I ) )
AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
DO 250 J = I + 1, I1
AB( J-I+1, I ) = AB( J-I+1, I ) / BII
250 CONTINUE
DO 260 J = MAX( 1, I-KA ), I - 1
AB( I-J+1, J ) = AB( I-J+1, J ) / BII
260 CONTINUE
DO 290 K = I - KBT, I - 1
DO 270 J = I - KBT, K
AB( K-J+1, J ) = AB( K-J+1, J ) -
$ BB( I-J+1, J )*CONJG( AB( I-K+1,
$ K ) ) - CONJG( BB( I-K+1, K ) )*
$ AB( I-J+1, J ) + REAL( AB( 1, I ) )*
$ BB( I-J+1, J )*CONJG( BB( I-K+1,
$ K ) )
270 CONTINUE
DO 280 J = MAX( 1, I-KA ), I - KBT - 1
AB( K-J+1, J ) = AB( K-J+1, J ) -
$ CONJG( BB( I-K+1, K ) )*
$ AB( I-J+1, J )
280 CONTINUE
290 CONTINUE
DO 310 J = I, I1
DO 300 K = MAX( J-KA, I-KBT ), I - 1
AB( J-K+1, K ) = AB( J-K+1, K ) -
$ BB( I-K+1, K )*AB( J-I+1, I )
300 CONTINUE
310 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by inv(S(i))
*
CALL CSSCAL( N-M, ONE / BII, X( M+1, I ), 1 )
IF( KBT.GT.0 )
$ CALL CGERU( N-M, KBT, -CONE, X( M+1, I ), 1,
$ BB( KBT+1, I-KBT ), LDBB-1,
$ X( M+1, I-KBT ), LDX )
END IF
*
* store a(i1,i) in RA1 for use in next loop over K
*
RA1 = AB( I1-I+1, I )
END IF
*
* Generate and apply vectors of rotations to chase all the
* existing bulges KA positions down toward the bottom of the
* band
*
DO 360 K = 1, KB - 1
IF( UPDATE ) THEN
*
* Determine the rotations which would annihilate the bulge
* which has in theory just been created
*
IF( I-K+KA.LT.N .AND. I-K.GT.1 ) THEN
*
* generate rotation to annihilate a(i-k+ka+1,i)
*
CALL CLARTG( AB( KA1-K, I ), RA1, RWORK( I-K+KA-M ),
$ WORK( I-K+KA-M ), RA )
*
* create nonzero element a(i-k+ka+1,i-k) outside the
* band and store it in WORK(i-k)
*
T = -BB( K+1, I-K )*RA1
WORK( I-K ) = RWORK( I-K+KA-M )*T -
$ CONJG( WORK( I-K+KA-M ) )*AB( KA1, I-K )
AB( KA1, I-K ) = WORK( I-K+KA-M )*T +
$ RWORK( I-K+KA-M )*AB( KA1, I-K )
RA1 = RA
END IF
END IF
J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
NR = ( N-J2+KA ) / KA1
J1 = J2 + ( NR-1 )*KA1
IF( UPDATE ) THEN
J2T = MAX( J2, I+2*KA-K+1 )
ELSE
J2T = J2
END IF
NRT = ( N-J2T+KA ) / KA1
DO 320 J = J2T, J1, KA1
*
* create nonzero element a(j+1,j-ka) outside the band
* and store it in WORK(j-m)
*
WORK( J-M ) = WORK( J-M )*AB( KA1, J-KA+1 )
AB( KA1, J-KA+1 ) = RWORK( J-M )*AB( KA1, J-KA+1 )
320 CONTINUE
*
* generate rotations in 1st set to annihilate elements which
* have been created outside the band
*
IF( NRT.GT.0 )
$ CALL CLARGV( NRT, AB( KA1, J2T-KA ), INCA, WORK( J2T-M ),
$ KA1, RWORK( J2T-M ), KA1 )
IF( NR.GT.0 ) THEN
*
* apply rotations in 1st set from the left
*
DO 330 L = 1, KA - 1
CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
$ AB( L+2, J2-L ), INCA, RWORK( J2-M ),
$ WORK( J2-M ), KA1 )
330 CONTINUE
*
* apply rotations in 1st set from both sides to diagonal
* blocks
*
CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
$ INCA, RWORK( J2-M ), WORK( J2-M ), KA1 )
*
CALL CLACGV( NR, WORK( J2-M ), KA1 )
END IF
*
* start applying rotations in 1st set from the right
*
DO 340 L = KA - 1, KB - K + 1, -1
NRT = ( N-J2+L ) / KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
$ AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
$ WORK( J2-M ), KA1 )
340 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by product of rotations in 1st set
*
DO 350 J = J2, J1, KA1
CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
$ RWORK( J-M ), WORK( J-M ) )
350 CONTINUE
END IF
360 CONTINUE
*
IF( UPDATE ) THEN
IF( I2.LE.N .AND. KBT.GT.0 ) THEN
*
* create nonzero element a(i-kbt+ka+1,i-kbt) outside the
* band and store it in WORK(i-kbt)
*
WORK( I-KBT ) = -BB( KBT+1, I-KBT )*RA1
END IF
END IF
*
DO 400 K = KB, 1, -1
IF( UPDATE ) THEN
J2 = I - K - 1 + MAX( 2, K-I0+1 )*KA1
ELSE
J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
END IF
*
* finish applying rotations in 2nd set from the right
*
DO 370 L = KB - K, 1, -1
NRT = ( N-J2+KA+L ) / KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( KA1-L+1, J2-KA ), INCA,
$ AB( KA1-L, J2-KA+1 ), INCA,
$ RWORK( J2-KA ), WORK( J2-KA ), KA1 )
370 CONTINUE
NR = ( N-J2+KA ) / KA1
J1 = J2 + ( NR-1 )*KA1
DO 380 J = J1, J2, -KA1
WORK( J ) = WORK( J-KA )
RWORK( J ) = RWORK( J-KA )
380 CONTINUE
DO 390 J = J2, J1, KA1
*
* create nonzero element a(j+1,j-ka) outside the band
* and store it in WORK(j)
*
WORK( J ) = WORK( J )*AB( KA1, J-KA+1 )
AB( KA1, J-KA+1 ) = RWORK( J )*AB( KA1, J-KA+1 )
390 CONTINUE
IF( UPDATE ) THEN
IF( I-K.LT.N-KA .AND. K.LE.KBT )
$ WORK( I-K+KA ) = WORK( I-K )
END IF
400 CONTINUE
*
DO 440 K = KB, 1, -1
J2 = I - K - 1 + MAX( 1, K-I0+1 )*KA1
NR = ( N-J2+KA ) / KA1
J1 = J2 + ( NR-1 )*KA1
IF( NR.GT.0 ) THEN
*
* generate rotations in 2nd set to annihilate elements
* which have been created outside the band
*
CALL CLARGV( NR, AB( KA1, J2-KA ), INCA, WORK( J2 ), KA1,
$ RWORK( J2 ), KA1 )
*
* apply rotations in 2nd set from the left
*
DO 410 L = 1, KA - 1
CALL CLARTV( NR, AB( L+1, J2-L ), INCA,
$ AB( L+2, J2-L ), INCA, RWORK( J2 ),
$ WORK( J2 ), KA1 )
410 CONTINUE
*
* apply rotations in 2nd set from both sides to diagonal
* blocks
*
CALL CLAR2V( NR, AB( 1, J2 ), AB( 1, J2+1 ), AB( 2, J2 ),
$ INCA, RWORK( J2 ), WORK( J2 ), KA1 )
*
CALL CLACGV( NR, WORK( J2 ), KA1 )
END IF
*
* start applying rotations in 2nd set from the right
*
DO 420 L = KA - 1, KB - K + 1, -1
NRT = ( N-J2+L ) / KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
$ AB( KA1-L, J2+1 ), INCA, RWORK( J2 ),
$ WORK( J2 ), KA1 )
420 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by product of rotations in 2nd set
*
DO 430 J = J2, J1, KA1
CALL CROT( N-M, X( M+1, J ), 1, X( M+1, J+1 ), 1,
$ RWORK( J ), WORK( J ) )
430 CONTINUE
END IF
440 CONTINUE
*
DO 460 K = 1, KB - 1
J2 = I - K - 1 + MAX( 1, K-I0+2 )*KA1
*
* finish applying rotations in 1st set from the right
*
DO 450 L = KB - K, 1, -1
NRT = ( N-J2+L ) / KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( KA1-L+1, J2 ), INCA,
$ AB( KA1-L, J2+1 ), INCA, RWORK( J2-M ),
$ WORK( J2-M ), KA1 )
450 CONTINUE
460 CONTINUE
*
IF( KB.GT.1 ) THEN
DO 470 J = N - 1, J2 + KA, -1
RWORK( J-M ) = RWORK( J-KA-M )
WORK( J-M ) = WORK( J-KA-M )
470 CONTINUE
END IF
*
END IF
*
GO TO 10
*
480 CONTINUE
*
* **************************** Phase 2 *****************************
*
* The logical structure of this phase is:
*
* UPDATE = .TRUE.
* DO I = 1, M
* use S(i) to update A and create a new bulge
* apply rotations to push all bulges KA positions upward
* END DO
* UPDATE = .FALSE.
* DO I = M - KA - 1, 2, -1
* apply rotations to push all bulges KA positions upward
* END DO
*
* To avoid duplicating code, the two loops are merged.
*
UPDATE = .TRUE.
I = 0
490 CONTINUE
IF( UPDATE ) THEN
I = I + 1
KBT = MIN( KB, M-I )
I0 = I + 1
I1 = MAX( 1, I-KA )
I2 = I + KBT - KA1
IF( I.GT.M ) THEN
UPDATE = .FALSE.
I = I - 1
I0 = M + 1
IF( KA.EQ.0 )
$ RETURN
GO TO 490
END IF
ELSE
I = I - KA
IF( I.LT.2 )
$ RETURN
END IF
*
IF( I.LT.M-KBT ) THEN
NX = M
ELSE
NX = N
END IF
*
IF( UPPER ) THEN
*
* Transform A, working with the upper triangle
*
IF( UPDATE ) THEN
*
* Form inv(S(i))**H * A * inv(S(i))
*
BII = REAL( BB( KB1, I ) )
AB( KA1, I ) = ( REAL( AB( KA1, I ) ) / BII ) / BII
DO 500 J = I1, I - 1
AB( J-I+KA1, I ) = AB( J-I+KA1, I ) / BII
500 CONTINUE
DO 510 J = I + 1, MIN( N, I+KA )
AB( I-J+KA1, J ) = AB( I-J+KA1, J ) / BII
510 CONTINUE
DO 540 K = I + 1, I + KBT
DO 520 J = K, I + KBT
AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
$ BB( I-J+KB1, J )*
$ CONJG( AB( I-K+KA1, K ) ) -
$ CONJG( BB( I-K+KB1, K ) )*
$ AB( I-J+KA1, J ) +
$ REAL( AB( KA1, I ) )*
$ BB( I-J+KB1, J )*
$ CONJG( BB( I-K+KB1, K ) )
520 CONTINUE
DO 530 J = I + KBT + 1, MIN( N, I+KA )
AB( K-J+KA1, J ) = AB( K-J+KA1, J ) -
$ CONJG( BB( I-K+KB1, K ) )*
$ AB( I-J+KA1, J )
530 CONTINUE
540 CONTINUE
DO 560 J = I1, I
DO 550 K = I + 1, MIN( J+KA, I+KBT )
AB( J-K+KA1, K ) = AB( J-K+KA1, K ) -
$ BB( I-K+KB1, K )*AB( J-I+KA1, I )
550 CONTINUE
560 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by inv(S(i))
*
CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
IF( KBT.GT.0 )
$ CALL CGERU( NX, KBT, -CONE, X( 1, I ), 1,
$ BB( KB, I+1 ), LDBB-1, X( 1, I+1 ), LDX )
END IF
*
* store a(i1,i) in RA1 for use in next loop over K
*
RA1 = AB( I1-I+KA1, I )
END IF
*
* Generate and apply vectors of rotations to chase all the
* existing bulges KA positions up toward the top of the band
*
DO 610 K = 1, KB - 1
IF( UPDATE ) THEN
*
* Determine the rotations which would annihilate the bulge
* which has in theory just been created
*
IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
*
* generate rotation to annihilate a(i+k-ka-1,i)
*
CALL CLARTG( AB( K+1, I ), RA1, RWORK( I+K-KA ),
$ WORK( I+K-KA ), RA )
*
* create nonzero element a(i+k-ka-1,i+k) outside the
* band and store it in WORK(m-kb+i+k)
*
T = -BB( KB1-K, I+K )*RA1
WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
$ CONJG( WORK( I+K-KA ) )*
$ AB( 1, I+K )
AB( 1, I+K ) = WORK( I+K-KA )*T +
$ RWORK( I+K-KA )*AB( 1, I+K )
RA1 = RA
END IF
END IF
J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
NR = ( J2+KA-1 ) / KA1
J1 = J2 - ( NR-1 )*KA1
IF( UPDATE ) THEN
J2T = MIN( J2, I-2*KA+K-1 )
ELSE
J2T = J2
END IF
NRT = ( J2T+KA-1 ) / KA1
DO 570 J = J1, J2T, KA1
*
* create nonzero element a(j-1,j+ka) outside the band
* and store it in WORK(j)
*
WORK( J ) = WORK( J )*AB( 1, J+KA-1 )
AB( 1, J+KA-1 ) = RWORK( J )*AB( 1, J+KA-1 )
570 CONTINUE
*
* generate rotations in 1st set to annihilate elements which
* have been created outside the band
*
IF( NRT.GT.0 )
$ CALL CLARGV( NRT, AB( 1, J1+KA ), INCA, WORK( J1 ), KA1,
$ RWORK( J1 ), KA1 )
IF( NR.GT.0 ) THEN
*
* apply rotations in 1st set from the left
*
DO 580 L = 1, KA - 1
CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
$ AB( KA-L, J1+L ), INCA, RWORK( J1 ),
$ WORK( J1 ), KA1 )
580 CONTINUE
*
* apply rotations in 1st set from both sides to diagonal
* blocks
*
CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
$ AB( KA, J1 ), INCA, RWORK( J1 ), WORK( J1 ),
$ KA1 )
*
CALL CLACGV( NR, WORK( J1 ), KA1 )
END IF
*
* start applying rotations in 1st set from the right
*
DO 590 L = KA - 1, KB - K + 1, -1
NRT = ( J2+L-1 ) / KA1
J1T = J2 - ( NRT-1 )*KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( L, J1T ), INCA,
$ AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
$ WORK( J1T ), KA1 )
590 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by product of rotations in 1st set
*
DO 600 J = J1, J2, KA1
CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
$ RWORK( J ), WORK( J ) )
600 CONTINUE
END IF
610 CONTINUE
*
IF( UPDATE ) THEN
IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
*
* create nonzero element a(i+kbt-ka-1,i+kbt) outside the
* band and store it in WORK(m-kb+i+kbt)
*
WORK( M-KB+I+KBT ) = -BB( KB1-KBT, I+KBT )*RA1
END IF
END IF
*
DO 650 K = KB, 1, -1
IF( UPDATE ) THEN
J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
ELSE
J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
END IF
*
* finish applying rotations in 2nd set from the right
*
DO 620 L = KB - K, 1, -1
NRT = ( J2+KA+L-1 ) / KA1
J1T = J2 - ( NRT-1 )*KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( L, J1T+KA ), INCA,
$ AB( L+1, J1T+KA-1 ), INCA,
$ RWORK( M-KB+J1T+KA ),
$ WORK( M-KB+J1T+KA ), KA1 )
620 CONTINUE
NR = ( J2+KA-1 ) / KA1
J1 = J2 - ( NR-1 )*KA1
DO 630 J = J1, J2, KA1
WORK( M-KB+J ) = WORK( M-KB+J+KA )
RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
630 CONTINUE
DO 640 J = J1, J2, KA1
*
* create nonzero element a(j-1,j+ka) outside the band
* and store it in WORK(m-kb+j)
*
WORK( M-KB+J ) = WORK( M-KB+J )*AB( 1, J+KA-1 )
AB( 1, J+KA-1 ) = RWORK( M-KB+J )*AB( 1, J+KA-1 )
640 CONTINUE
IF( UPDATE ) THEN
IF( I+K.GT.KA1 .AND. K.LE.KBT )
$ WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
END IF
650 CONTINUE
*
DO 690 K = KB, 1, -1
J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
NR = ( J2+KA-1 ) / KA1
J1 = J2 - ( NR-1 )*KA1
IF( NR.GT.0 ) THEN
*
* generate rotations in 2nd set to annihilate elements
* which have been created outside the band
*
CALL CLARGV( NR, AB( 1, J1+KA ), INCA, WORK( M-KB+J1 ),
$ KA1, RWORK( M-KB+J1 ), KA1 )
*
* apply rotations in 2nd set from the left
*
DO 660 L = 1, KA - 1
CALL CLARTV( NR, AB( KA1-L, J1+L ), INCA,
$ AB( KA-L, J1+L ), INCA, RWORK( M-KB+J1 ),
$ WORK( M-KB+J1 ), KA1 )
660 CONTINUE
*
* apply rotations in 2nd set from both sides to diagonal
* blocks
*
CALL CLAR2V( NR, AB( KA1, J1 ), AB( KA1, J1-1 ),
$ AB( KA, J1 ), INCA, RWORK( M-KB+J1 ),
$ WORK( M-KB+J1 ), KA1 )
*
CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
END IF
*
* start applying rotations in 2nd set from the right
*
DO 670 L = KA - 1, KB - K + 1, -1
NRT = ( J2+L-1 ) / KA1
J1T = J2 - ( NRT-1 )*KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( L, J1T ), INCA,
$ AB( L+1, J1T-1 ), INCA,
$ RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
$ KA1 )
670 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by product of rotations in 2nd set
*
DO 680 J = J1, J2, KA1
CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
$ RWORK( M-KB+J ), WORK( M-KB+J ) )
680 CONTINUE
END IF
690 CONTINUE
*
DO 710 K = 1, KB - 1
J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
*
* finish applying rotations in 1st set from the right
*
DO 700 L = KB - K, 1, -1
NRT = ( J2+L-1 ) / KA1
J1T = J2 - ( NRT-1 )*KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( L, J1T ), INCA,
$ AB( L+1, J1T-1 ), INCA, RWORK( J1T ),
$ WORK( J1T ), KA1 )
700 CONTINUE
710 CONTINUE
*
IF( KB.GT.1 ) THEN
DO 720 J = 2, I2 - KA
RWORK( J ) = RWORK( J+KA )
WORK( J ) = WORK( J+KA )
720 CONTINUE
END IF
*
ELSE
*
* Transform A, working with the lower triangle
*
IF( UPDATE ) THEN
*
* Form inv(S(i))**H * A * inv(S(i))
*
BII = REAL( BB( 1, I ) )
AB( 1, I ) = ( REAL( AB( 1, I ) ) / BII ) / BII
DO 730 J = I1, I - 1
AB( I-J+1, J ) = AB( I-J+1, J ) / BII
730 CONTINUE
DO 740 J = I + 1, MIN( N, I+KA )
AB( J-I+1, I ) = AB( J-I+1, I ) / BII
740 CONTINUE
DO 770 K = I + 1, I + KBT
DO 750 J = K, I + KBT
AB( J-K+1, K ) = AB( J-K+1, K ) -
$ BB( J-I+1, I )*CONJG( AB( K-I+1,
$ I ) ) - CONJG( BB( K-I+1, I ) )*
$ AB( J-I+1, I ) + REAL( AB( 1, I ) )*
$ BB( J-I+1, I )*CONJG( BB( K-I+1,
$ I ) )
750 CONTINUE
DO 760 J = I + KBT + 1, MIN( N, I+KA )
AB( J-K+1, K ) = AB( J-K+1, K ) -
$ CONJG( BB( K-I+1, I ) )*
$ AB( J-I+1, I )
760 CONTINUE
770 CONTINUE
DO 790 J = I1, I
DO 780 K = I + 1, MIN( J+KA, I+KBT )
AB( K-J+1, J ) = AB( K-J+1, J ) -
$ BB( K-I+1, I )*AB( I-J+1, J )
780 CONTINUE
790 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by inv(S(i))
*
CALL CSSCAL( NX, ONE / BII, X( 1, I ), 1 )
IF( KBT.GT.0 )
$ CALL CGERC( NX, KBT, -CONE, X( 1, I ), 1, BB( 2, I ),
$ 1, X( 1, I+1 ), LDX )
END IF
*
* store a(i,i1) in RA1 for use in next loop over K
*
RA1 = AB( I-I1+1, I1 )
END IF
*
* Generate and apply vectors of rotations to chase all the
* existing bulges KA positions up toward the top of the band
*
DO 840 K = 1, KB - 1
IF( UPDATE ) THEN
*
* Determine the rotations which would annihilate the bulge
* which has in theory just been created
*
IF( I+K-KA1.GT.0 .AND. I+K.LT.M ) THEN
*
* generate rotation to annihilate a(i,i+k-ka-1)
*
CALL CLARTG( AB( KA1-K, I+K-KA ), RA1,
$ RWORK( I+K-KA ), WORK( I+K-KA ), RA )
*
* create nonzero element a(i+k,i+k-ka-1) outside the
* band and store it in WORK(m-kb+i+k)
*
T = -BB( K+1, I )*RA1
WORK( M-KB+I+K ) = RWORK( I+K-KA )*T -
$ CONJG( WORK( I+K-KA ) )*
$ AB( KA1, I+K-KA )
AB( KA1, I+K-KA ) = WORK( I+K-KA )*T +
$ RWORK( I+K-KA )*AB( KA1, I+K-KA )
RA1 = RA
END IF
END IF
J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
NR = ( J2+KA-1 ) / KA1
J1 = J2 - ( NR-1 )*KA1
IF( UPDATE ) THEN
J2T = MIN( J2, I-2*KA+K-1 )
ELSE
J2T = J2
END IF
NRT = ( J2T+KA-1 ) / KA1
DO 800 J = J1, J2T, KA1
*
* create nonzero element a(j+ka,j-1) outside the band
* and store it in WORK(j)
*
WORK( J ) = WORK( J )*AB( KA1, J-1 )
AB( KA1, J-1 ) = RWORK( J )*AB( KA1, J-1 )
800 CONTINUE
*
* generate rotations in 1st set to annihilate elements which
* have been created outside the band
*
IF( NRT.GT.0 )
$ CALL CLARGV( NRT, AB( KA1, J1 ), INCA, WORK( J1 ), KA1,
$ RWORK( J1 ), KA1 )
IF( NR.GT.0 ) THEN
*
* apply rotations in 1st set from the right
*
DO 810 L = 1, KA - 1
CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
$ INCA, RWORK( J1 ), WORK( J1 ), KA1 )
810 CONTINUE
*
* apply rotations in 1st set from both sides to diagonal
* blocks
*
CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
$ AB( 2, J1-1 ), INCA, RWORK( J1 ),
$ WORK( J1 ), KA1 )
*
CALL CLACGV( NR, WORK( J1 ), KA1 )
END IF
*
* start applying rotations in 1st set from the left
*
DO 820 L = KA - 1, KB - K + 1, -1
NRT = ( J2+L-1 ) / KA1
J1T = J2 - ( NRT-1 )*KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
$ AB( KA1-L, J1T-KA1+L ), INCA,
$ RWORK( J1T ), WORK( J1T ), KA1 )
820 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by product of rotations in 1st set
*
DO 830 J = J1, J2, KA1
CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
$ RWORK( J ), CONJG( WORK( J ) ) )
830 CONTINUE
END IF
840 CONTINUE
*
IF( UPDATE ) THEN
IF( I2.GT.0 .AND. KBT.GT.0 ) THEN
*
* create nonzero element a(i+kbt,i+kbt-ka-1) outside the
* band and store it in WORK(m-kb+i+kbt)
*
WORK( M-KB+I+KBT ) = -BB( KBT+1, I )*RA1
END IF
END IF
*
DO 880 K = KB, 1, -1
IF( UPDATE ) THEN
J2 = I + K + 1 - MAX( 2, K+I0-M )*KA1
ELSE
J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
END IF
*
* finish applying rotations in 2nd set from the left
*
DO 850 L = KB - K, 1, -1
NRT = ( J2+KA+L-1 ) / KA1
J1T = J2 - ( NRT-1 )*KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( KA1-L+1, J1T+L-1 ), INCA,
$ AB( KA1-L, J1T+L-1 ), INCA,
$ RWORK( M-KB+J1T+KA ),
$ WORK( M-KB+J1T+KA ), KA1 )
850 CONTINUE
NR = ( J2+KA-1 ) / KA1
J1 = J2 - ( NR-1 )*KA1
DO 860 J = J1, J2, KA1
WORK( M-KB+J ) = WORK( M-KB+J+KA )
RWORK( M-KB+J ) = RWORK( M-KB+J+KA )
860 CONTINUE
DO 870 J = J1, J2, KA1
*
* create nonzero element a(j+ka,j-1) outside the band
* and store it in WORK(m-kb+j)
*
WORK( M-KB+J ) = WORK( M-KB+J )*AB( KA1, J-1 )
AB( KA1, J-1 ) = RWORK( M-KB+J )*AB( KA1, J-1 )
870 CONTINUE
IF( UPDATE ) THEN
IF( I+K.GT.KA1 .AND. K.LE.KBT )
$ WORK( M-KB+I+K-KA ) = WORK( M-KB+I+K )
END IF
880 CONTINUE
*
DO 920 K = KB, 1, -1
J2 = I + K + 1 - MAX( 1, K+I0-M )*KA1
NR = ( J2+KA-1 ) / KA1
J1 = J2 - ( NR-1 )*KA1
IF( NR.GT.0 ) THEN
*
* generate rotations in 2nd set to annihilate elements
* which have been created outside the band
*
CALL CLARGV( NR, AB( KA1, J1 ), INCA, WORK( M-KB+J1 ),
$ KA1, RWORK( M-KB+J1 ), KA1 )
*
* apply rotations in 2nd set from the right
*
DO 890 L = 1, KA - 1
CALL CLARTV( NR, AB( L+1, J1 ), INCA, AB( L+2, J1-1 ),
$ INCA, RWORK( M-KB+J1 ), WORK( M-KB+J1 ),
$ KA1 )
890 CONTINUE
*
* apply rotations in 2nd set from both sides to diagonal
* blocks
*
CALL CLAR2V( NR, AB( 1, J1 ), AB( 1, J1-1 ),
$ AB( 2, J1-1 ), INCA, RWORK( M-KB+J1 ),
$ WORK( M-KB+J1 ), KA1 )
*
CALL CLACGV( NR, WORK( M-KB+J1 ), KA1 )
END IF
*
* start applying rotations in 2nd set from the left
*
DO 900 L = KA - 1, KB - K + 1, -1
NRT = ( J2+L-1 ) / KA1
J1T = J2 - ( NRT-1 )*KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
$ AB( KA1-L, J1T-KA1+L ), INCA,
$ RWORK( M-KB+J1T ), WORK( M-KB+J1T ),
$ KA1 )
900 CONTINUE
*
IF( WANTX ) THEN
*
* post-multiply X by product of rotations in 2nd set
*
DO 910 J = J1, J2, KA1
CALL CROT( NX, X( 1, J ), 1, X( 1, J-1 ), 1,
$ RWORK( M-KB+J ), CONJG( WORK( M-KB+J ) ) )
910 CONTINUE
END IF
920 CONTINUE
*
DO 940 K = 1, KB - 1
J2 = I + K + 1 - MAX( 1, K+I0-M+1 )*KA1
*
* finish applying rotations in 1st set from the left
*
DO 930 L = KB - K, 1, -1
NRT = ( J2+L-1 ) / KA1
J1T = J2 - ( NRT-1 )*KA1
IF( NRT.GT.0 )
$ CALL CLARTV( NRT, AB( KA1-L+1, J1T-KA1+L ), INCA,
$ AB( KA1-L, J1T-KA1+L ), INCA,
$ RWORK( J1T ), WORK( J1T ), KA1 )
930 CONTINUE
940 CONTINUE
*
IF( KB.GT.1 ) THEN
DO 950 J = 2, I2 - KA
RWORK( J ) = RWORK( J+KA )
WORK( J ) = WORK( J+KA )
950 CONTINUE
END IF
*
END IF
*
GO TO 490
*
* End of CHBGST
*
END
|